Radboud University

The complete cost of cofactor $h=1$

Implementing Weierstrass curves with complete formulas

Peter Schwabe Daan Sprenkels
18 December 2019

Radboud University, peter@cryptojedi.org, daan@dsprenkels.com

Introduction

Some history

- Traditionally, we use various different Weierstraß curves
- Considered unsafe because of incomplete formulas
- 2006: Curve25519 [Ber06] proposed as better alternative

Cofactor (in)security

Interesting cases of cofactor insecurity in protocols (mis)using Curve25519:

- 2017: [lfS17] reported major vulnerability in Monero

Cofactor (in)security

Interesting cases of cofactor insecurity in protocols (mis)using Curve25519:

- 2017: [lfS17] reported major vulnerability in Monero
- 2019: [CJ19] found three other vulnerabilities caused by cofactor insecurity
- Transaction involves a ring signature
- Trivial case: ring size is 1
- Transaction involves a ring signature
- Trivial case: ring size is 1
- Double-spending is prevented by a key image I
- Transaction involves a ring signature
- Trivial case: ring size is 1
- Double-spending is prevented by a key image I
- $/$ binds the transaction to signer's public key P
- Transaction involves a ring signature
- Trivial case: ring size is 1
- Double-spending is prevented by a key image I
- I binds the transaction to signer's public key P
- Binding is in zero-knowledge
- Transaction involves a ring signature
- Trivial case: ring size is 1
- Double-spending is prevented by a key image I
- I binds the transaction to signer's public key P
- Binding is in zero-knowledge
- Key image I should be unique

Monero transactions (simplified)

- Have generators G_{1}, G_{2}; private key x; public key P; key image I.
- $\operatorname{SIGN}_{x}(m)$
- Sign m with private key x
- Choose random $u \in_{R} h \mathbb{Z}_{\ell}$
- Compute commitment $a_{2}=[u] G_{2} ; c=H\left(m, a_{1}, a_{2}\right)$; $r=u+c x$
- Output signature $s=\left(a_{1}, a_{2}, r\right)$

Monero transactions (simplified)

- Have generators G_{1}, G_{2}; private key x; public key P; key image I.
- $\operatorname{SIGN}_{x}(m)$
- Sign m with private key x
- Choose random $u \in_{R} h \mathbb{Z}_{\ell}$
- Compute commitment $a_{2}=[u] G_{2} ; c=H\left(m, a_{1}, a_{2}\right)$;

$$
r=u+c x
$$

- Output signature $s=\left(a_{1}, a_{2}, r\right)$
- VERIFY ${ }_{P, I}(m, s)$
- $[r] G_{1} \stackrel{?}{=} a_{1}+[c] P$
- $[r] G_{2} \stackrel{?}{=} a_{2}+[c] /$
- I unique?

Attacking Monero signatures

Challenge. Find some signature+keypair a_{2}, c, r, and I, s.t.

$$
[r] G_{2}=a_{2}+[c] /=a_{2}+[c] I^{\prime},
$$

where $I \neq I^{\prime}$.

Attacking Monero signatures

- Challenge. Find some signature+keypair a_{2}, c, r, and I, s.t.

$$
[r] G_{2}=a_{2}+[c] /=a_{2}+[c] I^{\prime},
$$

where $I \neq I^{\prime}$.

- Solution. Choose $I^{\prime}=I+T_{\alpha}$, where $\alpha \mid c$ and $[\alpha] T_{\alpha}=\mathcal{O}$.

Attacking Monero signatures

- Challenge. Find some signature+keypair a_{2}, c, r, and I, s.t.

$$
[r] G_{2}=a_{2}+[c] /=a_{2}+[c] I^{\prime}
$$

where $I \neq I^{\prime}$.

- Solution. Choose $I^{\prime}=I+T_{\alpha}$, where $\alpha \mid c$ and $[\alpha] T_{\alpha}=\mathcal{O}$.
- Correctness.

$$
a_{2}+[c] I^{\prime}=a_{2}+[c]\left(I+T_{\alpha}\right)
$$

Attacking Monero signatures

- Challenge. Find some signature+keypair a_{2}, c, r, and I, s.t.

$$
[r] G_{2}=a_{2}+[c] /=a_{2}+[c] I^{\prime}
$$

where $I \neq I^{\prime}$.

- Solution. Choose $I^{\prime}=I+T_{\alpha}$, where $\alpha \mid c$ and $[\alpha] T_{\alpha}=\mathcal{O}$.
- Correctness.

$$
\begin{aligned}
a_{2}+[c] I^{\prime} & =a_{2}+[c]\left(I+T_{\alpha}\right) \\
& =a_{2}+[c] I+\left[\frac{c}{\alpha}\right][\alpha] T_{\alpha}
\end{aligned}
$$

Attacking Monero signatures

- Challenge. Find some signature+keypair a_{2}, c, r, and I, s.t.

$$
[r] G_{2}=a_{2}+[c] /=a_{2}+[c] I^{\prime},
$$

where $I \neq I^{\prime}$.

- Solution. Choose $I^{\prime}=I+T_{\alpha}$, where $\alpha \mid c$ and $[\alpha] T_{\alpha}=\mathcal{O}$.
- Correctness.

$$
\begin{aligned}
a_{2}+[c] I^{\prime} & =a_{2}+[c]\left(I+T_{\alpha}\right) \\
& =a_{2}+[c] I+\left[\frac{c}{\alpha}\right][\alpha] T_{\alpha} \\
& =a_{2}+[c] I+\left[\frac{c}{\alpha}\right] \mathcal{O}
\end{aligned}
$$

Attacking Monero signatures

- Challenge. Find some signature+keypair a_{2}, c, r, and I, s.t.

$$
[r] G_{2}=a_{2}+[c] /=a_{2}+[c] I^{\prime},
$$

where $I \neq I^{\prime}$.

- Solution. Choose $I^{\prime}=I+T_{\alpha}$, where $\alpha \mid c$ and $[\alpha] T_{\alpha}=\mathcal{O}$.
- Correctness.

$$
\begin{aligned}
a_{2}+[c] I^{\prime} & =a_{2}+[c]\left(I+T_{\alpha}\right) \\
& =a_{2}+[c] I+\left[\frac{c}{\alpha}\right][\alpha] T_{\alpha} \\
& =a_{2}+[c] I+\left[\frac{c}{\alpha}\right] \mathcal{O}
\end{aligned}
$$

Attacking Monero signatures

- Challenge. Find some signature+keypair a_{2}, c, r, and I, s.t.

$$
[r] G_{2}=a_{2}+[c] I=a_{2}+[c] I^{\prime},
$$

where $I \neq I^{\prime}$.

- Solution. Choose $I^{\prime}=I+T_{\alpha}$, where $\alpha \mid c$ and $[\alpha] T_{\alpha}=\mathcal{O}$.
- Correctness.

$$
\begin{aligned}
a_{2}+[c] I^{\prime} & =a_{2}+[c]\left(I+T_{\alpha}\right) \\
& =a_{2}+[c] I+\left[\frac{c}{\alpha}\right][\alpha] T_{\alpha} \\
& =a_{2}+[c] I+\left[\frac{c}{\alpha}\right] \mathcal{O} \\
& =a_{2}+[c] I
\end{aligned}
$$

Surely this could have been prevented?

Easy fix:

- Protocol assumed $[r] G_{2}=a_{2}+[c]$ /, only for a single /
- Not the case for Curve25519

Surely this could have been prevented?

Easy fix:

- Protocol assumed $[r] G_{2}=a_{2}+[c]$ /, only for a single /
- Not the case for Curve25519
- Fix: check if the order of I is ℓ

Surely this could have been prevented?

Easy fix:

- Protocol assumed $[r] G_{2}=a_{2}+[c]$ /, only for a single /
- Not the case for Curve25519
- Fix: check if the order of I is ℓ
- i.e. check $[\ell] \stackrel{?}{=} \mathcal{O}$

Surely this could have been prevented?

Easy fix:

- Protocol assumed $[r] G_{2}=a_{2}+[c]$ /, only for a single /
- Not the case for Curve25519
- Fix: check if the order of I is ℓ
- i.e. check $[\ell] \stackrel{?}{=} \mathcal{O}$
- Fun fact: this check makes the verification $2 \times$ slower

My guess:

```
How do I validate Curve25519 public keys?
Don't. The Curve25519 function was carefully designed to allow all 32-byte strings as Diffie-Hellman public keys. Relevant lower-level facts: the number of points of this elliptic curve over the base field is 8 times the prime \(2^{\wedge} 252+\)
27742317777372353535851937790883648493 ; the number of points
of the twist is 4 times the prime \(2^{\wedge} 253\)
```

(highlight added by me)

Surely this could have been prevented?

Easy fix:

- Protocol assumed $[r] G_{2}=a_{2}+[c] /$, only for a single /
- Fix: check if the order of l is ℓ
- i.e. check $[\ell] I \stackrel{?}{=} \mathcal{O}$
- Better fix: use a prime-order curve

Surely this could have been prevented?

Easy fix:

- Protocol assumed $[r] G_{2}=a_{2}+[c] /$, only for a single $/$
- Fix: check if the order of l is ℓ
- i.e. check $[\ell] \stackrel{?}{=} \mathcal{O}$
- Better fix: use a prime-order curve
- Best fix: use Ristretto [Ham15, dVGT+19]

Research question

- Curve25519: nontrivial cofactor
- Weierstraß: slow or incomplete formulas

Research question

- Curve25519: nontrivial cofactor
- Weierstraß: slow or incomplete formulas
- But how much slower exactly?

Research question

What is the actual performance benefit of Curve25519 over traditional (Weierstrass) curves when using complete formulas?

Our research:

- Implement variable base-point scalar multiplication
- for a prime-order curve,
- that looks similar to Curve25519,
- using complete formulas,
- on Sandy Bridge, Haswell, and Cortex M4.

Our research:

- Implement variable base-point scalar multiplication
- for a prime-order curve,
- that looks similar to Curve25519,
- using complete formulas,
- on Sandy Bridge, Haswell, and Cortex M4.
- Compare performance with Curve25519

Selecting a curve

Selecting a curve

Given the recent ECC low-order point brouhaha, I suggest this curve over GF(2^255-19): $y^{\wedge} 2=x^{\wedge} 3-3^{*} x+13318$, generator $G=(-7,114)$.

1:08 AM - 29 May 2017

11 Retweets
24 Likes

$Q 2$ 㲸 $11 \quad 24 \quad \square$

- I.e. $\mathcal{E}: y^{2}=x^{3}-3 x+13318$, defined over $\mathbb{F}_{2^{255}-19}$.

Selecting a curve

Given the recent ECC low-order point brouhaha, I suggest this curve over GF(2^255-19): $y^{\wedge} 2=x^{\wedge} 3-3^{*} x+13318$, generator $G=(-7,114)$.

1:08 AM - 29 May 2017

11 Retweets 24 Likes

$Q 2$ 㲸 $11 \quad 24 \quad \square$
\Rightarrow I.e. $\mathcal{E}: y^{2}=x^{3}-3 x+13318$, defined over $\mathbb{F}_{2^{255}-19}$.

- Prime-order curve; same field as Curve25519

Implementation

Scalar multiplication

- Use left-to-right fixed-window method $(w=5)$

Scalar multiplication

- Use left-to-right fixed-window method $(w=5)$
- Uses $263 \cdot$ double +59 •add operations

Use the Renes-Costello-Batina addition formulas [RCB16]

- Complete formulas (no exceptions)
- No optimized software implementations published

Field arithmetic

Sandy Bridge

- AVX: has 2-way parallel 64-bit integer arithmetic
- AVX: has 4-way parallel floating-point arithmetic
$\Rightarrow \rightarrow$ use radix- $2^{21.25}$ representation based on [Ber04]

Sandy Bridge

- AVX: has 2-way parallel 64-bit integer arithmetic
- AVX: has 4-way parallel floating-point arithmetic
$\rightarrow \rightarrow$ use radix- $2^{21.25}$ representation based on [Ber04]

Haswell

- AVX2: has 4-way parallel 64-bit integer arithmetic
$\rightarrow \rightarrow$ use radix- $2^{25.5}$ representation based on [BS12]

Field arithmetic

Sandy Bridge

- AVX: has 2-way parallel 64-bit integer arithmetic
- AVX: has 4-way parallel floating-point arithmetic
$\Rightarrow \rightarrow$ use radix- $2^{21.25}$ representation based on [Ber04]
Haswell
- AVX2: has 4-way parallel 64-bit integer arithmetic
$\rightarrow \rightarrow$ use radix- $2^{25.5}$ representation based on [BS12]
Cortex-M4
- Has powerful umlal and umaal instructions
- \rightarrow use packed representation from [HL19]

Sandy Bridge + Haswell

- Vectorize all multiplications and some other ops
- Shuffles etc. all implemented by hand
- Inline all the calls to field arithmetic

Sandy Bridge + Haswell

- Vectorize all multiplications and some other ops
- Shuffles etc. all implemented by hand
- Inline all the calls to field arithmetic

Cortex-M4

- Size-constrained device
- One-to-one implementation of formulas
- No function inlining

Results

Figure: cycle counts in kcc

Implementation	SB	H	M4
Chou16 [Cho16]	159^{a}	156^{b}	-
Faz-Hernández-López15 [FL15]	-	156^{a}	-
OLHF18 [OLH +18$]$	-	139^{a}	-
Fujii-Aranha19 [FA19]	-	-	907^{a}
Haase-Labrique19 [HL19]	-	-	625^{a}
Curve13318 (this work)	390^{b}	205^{b}	1797^{b}
slowdown	$2.45 \times$	$1.47 \times$	$2.87 \times$
${ }^{a}$ As reported in the respective publication.			
${ }^{b}$ From own measurements.			

- Use formulas from [SM17]
- Benchmark with ristretto255

The code is at https://github.com/dsprenkels/curve13318-all (public domain)

Extra reading:

- Paper: https://dsprenkels.com/files/curve13318.pdf
- Monero vulnerability (1): https://nickler.ninja/blog/2017/05/23/exploiting-low-order-generators-in-one-time-ring-signatures/
- Monero vulnerability (2):
https://moderncrypto.org/mail-archive/curves/2017/000898.html

Paulo S. L. M. Barreto.
Tweet, 2017.
https:
//twitter.com/pbarreto/status/869103226276134912.
目 Daniel J. Bernstein.
Floating-point arithmetic and message authentication, 2004.
http://cr.yp.to/papers.html\#hash127.

图 Daniel J. Bernstein.
Curve25519: new Diffie-Hellman speed records.
In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography - PKC 2006, volume 3958 of LNCS, pages 207-228. Springer, 2006.
http://cr.yp.to/papers.html\#curve25519.
圊 Daniel J. Bernstein and Tanja Lange.
eBACS: ECRYPT Benchmarking of Cryptographic Systems.
https://bench.cr.yp.to/results-sign.html (accessed 2019-10-03).

References iii

圊 Daniel J. Bernstein and Peter Schwabe.

NEON crypto.

In Emmanuel Prouff and Patrick Schaumont, editors, Cryptographic Hardware and Embedded Systems - CHES 2012, volume 7428 of LNCS, pages 320-339. Springer, 2012. http://cryptojedi.org/papers/\#neoncrypto.

圊 Tung Chou.

Sandy2x: New Curve25519 speed records.

In Orr Dunkelman and Liam Keliher, editors, Selected Areas in
Cryptography - SAC 2015, volume 9566 of LNCS, pages 145-160. Springer, 2016.
https://www.win.tue.nl/~tchou/papers/sandy2x.pdf.
Cas Cremers and Dennis Jackson.
Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using Diffie-Hellman.

In 2019 IEEE 32nd Computer Security Foundations Symposium (CSF), pages 78-93, 2019.
https://eprint.iacr.org/2019/526.

嗇 Henry de Valence, Jack Grigg, George Tankersley, Filippo Valsorda, and Isis Lovecruft.

The ristretto 255 group.

IETF CFRG Internet Draft, 2019.
https://tools.ietf.org/html/draft-hdevalence-cfrg-ristretto-01 (accessed 2019-07-31).

國 Hayato Fujii and Diego F. Aranha.

Curve25519 for the Cortex-M4 and Beyond.

In Tanja Lange and Orr Dunkelman, editors, Progress in Cryptology - LATINCRYPT 2017, volume 11368 of LNCS, pages 109-127. Springer, 2019.
http://www.cs.haifa.ac.il/~orrd/LC17/paper39.pdf.
R- Armando Faz-Hernández and Julio López.
Fast implementation of Curve25519 using AVX2.
In Kristin Lauter and Francisco Rodríguez-Henríquez, editors, Progress in Cryptology - LATINCRYPT 2015, volume 9230 of LNCS, pages 329-345. Springer, 2015.
(Mike Hamburg.
Decaf: Eliminating cofactors through point compression.

In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015, volume 9215 of LNCS, pages 705-723. Springer, 2015.
https://www.shiftleft.org/papers/decaf/.
围 Björn Haase and Benoît Labrique.
AuCPace: Efficient verifier-based PAKE protocol tailored for the IloT.

IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 1-48, 2019.
https:
//tches.iacr.org/index.php/TCHES/article/view/7384.

References vili

围 luigi1111 and Riccardo "fluffypony" Spagni.

Disclosure of a major bug in CryptoNote based currencies.

Post on the Monero website, 2017.
https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html (accessed 2019-07-31).

Thomaz Oliveira, Julio López, Hüseyin Hıșl, Armando Faz-Hernández, and Francisco Rodríguez-Henríquez.

How to (Pre-)Compute a Ladder.

In Carlisle Adams and Jan Camenisch, editors, Selected Areas in Cryptography - SAC 2017, volume 10719 of LNCS, pages 172-191. Springer, 2018.
https://eprint.iacr.org/2017/264.pdf.

- Joost Renes, Craig Costello, and Lejla Batina.

Complete addition formulas for prime order elliptic curves.

In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology - Eurocrypt 2016, volume 9230 of LNCS, pages 403-428. Springer, 2016.
http://eprint.iacr.org/2015/1060.

Ruggero Susella and Sofia Montrasio.
A compact and exception-free ladder for all short Weierstrass elliptic curves.

In Kerstin Lemke-Rust and Michael Tunstall, editors, Smart Card Research and Advanced Applications, volume 10146 of LNCS, pages 156-173. Springer, 2017.

Preliminaries

$$
\mathcal{E}: y^{2}=x^{3}+a x+b
$$

Elliptic curves

$$
\mathcal{E}: y^{2}=x^{3}+a x+b
$$

Elliptic curves: addition

$$
\mathcal{E}: y^{2}=x^{3}+a x+b
$$

Elliptic curves: doubling

$$
\mathcal{E}: y^{2}=x^{3}+a x+b
$$

Elliptic curves

- Coordinates include the point at infinity \mathcal{O}
- Define $P+\mathcal{O}=P$

Elliptic curves

- Coordinates include the point at infinity \mathcal{O}
- Define $P+\mathcal{O}=P$
- Curve equation: $\mathcal{E}: y^{2}=x^{3}+a x+b$
- Coordinates include the point at infinity \mathcal{O}
- Define $P+\mathcal{O}=P$
- Curve equation: $\mathcal{E}: y^{2}=x^{3}+a x+b$
- Coordinates are defined over a field \mathbb{F}_{q}
- I.e. integers modulo q

$$
\mathcal{E}: y^{2}=x^{3}-3 x+1 \text { defined over } \mathbb{F}_{11}
$$

Elliptic curves: actual addition

$$
\mathcal{E}: y^{2}=x^{3}-3 x+1 \text { defined over } \mathbb{F}_{11}
$$

Group arithmetic

- We can do arithmetic with these rules! :)
- Addition: $P+Q$
- Subtraction: $P-Q$
- Neutral element: \mathcal{O}, i.e. "zero"

Group arithmetic

- We can do arithmetic with these rules! :)
- Addition: $P+Q$
- Subtraction: $P-Q$
- Neutral element: \mathcal{O}, i.e. "zero"
- Scalar multiplication: $[k] P=\underbrace{P+P+\ldots+P}_{k \text { times }}$

Group arithmetic

- We can do arithmetic with these rules! :)
- Addition: $P+Q$
- Subtraction: $P-Q$
- Neutral element: \mathcal{O}, i.e. "zero"
- Scalar multiplication: $[k] P=\underbrace{P+P+\ldots+P}_{k \text { times }}$
- Discrete log problem: given P, Q where $[k] P=Q$, hard to find k

Elliptic curves are cyclic

- Points form a cycle:
$\mathcal{O} \xrightarrow{+P} P \xrightarrow{+P}[2] P \xrightarrow{+P}[3] P \xrightarrow{+P} \ldots \xrightarrow{+P}[n-1] P \xrightarrow{+P} \mathcal{O}$

Elliptic curves are cyclic

- Points form a cycle:

$$
\underbrace{\mathcal{O} \xrightarrow{+P} P \xrightarrow{+P}[2] P \xrightarrow{+P}[3] P \xrightarrow{+P} \ldots \xrightarrow{+P}[n-1] P \xrightarrow{+P} \mathcal{O}}_{n \text { steps }}
$$

- The order n should contain a large prime factor
- Only one cycle if n is prime
- If n is not a prime

Then $n=h \cdot \ell$

- I.e. small loops are possible:
E.g. if $4 \mid n$, then there is a point T_{4} :
$\underbrace{\mathcal{O} \xrightarrow{+T_{4}} T_{4} \xrightarrow{+T_{4}}[2] T_{4} \xrightarrow{+T_{4}}[3] T_{4} \xrightarrow{+T_{4}} \mathcal{O}}_{\text {only } 4 \text { steps! }}$
- If n is not a prime

Then $n=h \cdot \ell$

- I.e. small loops are possible:
E.g. if $4 \mid n$, then there is a point T_{4} :

- h is called the cofactor
- If n is not a prime Then $n=h \cdot \ell$
- I.e. small loops are possible:
E.g. if $4 \mid n$, then there is a point T_{4} :

- h is called the cofactor
- This property is often harmless
- If n is not a prime

Then $n=h \cdot \ell$

- I.e. small loops are possible:
E.g. if $4 \mid n$, then there is a point T_{4} :
$\underbrace{\mathcal{O} \xrightarrow{+T_{4}} T_{4} \xrightarrow{+T_{4}}[2] T_{4} \xrightarrow{+T_{4}}[3] T_{4} \xrightarrow{+T_{4}} \mathcal{O}}_{\text {only } 4 \text { steps! }}$
- h is called the cofactor
- This property is often harmless
- I.e. sometimes it's the opposite of harmless

Double-and-add


```
function DoubleAndAdd \((k, P)\)
    \(R \leftarrow \mathcal{O}\)
    for \(i\) from \(n-1\) down to 0 do
    \(R \leftarrow[2] R\)
    if \(k_{i}=1\) then
        \(R \leftarrow R+P\)
    else
        \(R \leftarrow R+\mathcal{O}\)
    end if
    end for
    return \(R\)
end function
```


Fixed-window double-and-add

```
function FixedWindow \((k, P)\)
\(\triangleright\) Compute \([k] P\)
    \(k^{\prime} \leftarrow \operatorname{Windows}_{w}(k)\)
    Precompute \(\left([2] P, \ldots,\left[2^{w}-1\right] P\right)\)
    \(R \leftarrow \mathcal{O}\)
    for \(i\) from \(\frac{n}{w}-1\) down to 0 do
    for \(j\) from 0 to \(w-1\) do
        \(R \leftarrow[2] R\)
    end for
    if \(k_{i}^{\prime} \neq 0\) then
    \(R \leftarrow R+\left[k_{i}^{\prime}\right] P\)
    else
        \(R \leftarrow R+\mathcal{O}\)
    end if
    end for
    return \(R\)
end function
```


Signed double-and-add

```
function \(\operatorname{SignedFixedWindow~}(k, P)\)
\(\triangleright\) Compute \([k] P\)
    \(k^{\prime} \leftarrow\) RecodeSigned \(\left.^{\left(W_{i n d o w s}^{w}\right.}(k)\right)\)
    Precompute ( \([2] P, \ldots,\left[2^{w-1}\right] P\) )
    \(R \leftarrow \mathcal{O}\)
    for \(i\) from \(\frac{n}{w}-1\) down to 0 do
        for \(j\) from 0 to \(w-1\) do
                \(R \leftarrow[2] R \quad \triangleright w\) doublings
    end for
    if \(k_{i}^{\prime}>0\) then
        \(R \leftarrow R+\left[k_{i}^{\prime}\right] P\)
                            \(\triangleright\) Addition
    else if \(k_{i}^{\prime}<0\) then
        \(R \leftarrow R-\left[-k_{i}^{\prime}\right] P\)
    \(\triangleright\) Addition
    else
        \(R \leftarrow R+\mathcal{O} \quad \triangleright\) Addition
    end if
    end for
    return \(R\)
end function
```

function ScalarMultiplication $(k, P) \quad \triangleright$ Compute $[k] P$
$\mathbf{T} \leftarrow(\mathcal{O}, P, \ldots,[16] P) \quad \triangleright$ Precompute $([2] P, \ldots,[16] P)$
$k^{\prime} \leftarrow$ RecodeSigned $^{\prime} \mathrm{Windows}_{5}(k)$)
$R \leftarrow \mathcal{O}$
for i from 50 down to 0 do
for j from 0 to 4 do

$$
R \leftarrow[2] R
$$

$\triangleright 5$ doublings
end for
if $k_{i}^{\prime}<0$ then

$$
R \leftarrow R-\mathbf{T}_{-k_{i}^{\prime}} \quad \triangleright \text { Addition }
$$

else

$$
R \leftarrow R+\mathbf{T}_{k_{i}^{\prime}}
$$

\triangleright Addition
end if
end for
return R
$\triangleright R=\left(X_{R}: Y_{R}: Z_{R}\right)$
end function

Signed windows

$$
k=\underbrace{1011}_{k_{3}^{\prime}} \underbrace{0010}_{k_{2}^{\prime}} \underbrace{0110}_{k_{1}^{\prime}} \underbrace{1110}_{k_{0}^{\prime}}
$$

Signed window recoding

$$
\begin{aligned}
& k=1011001001101110 \\
& \downarrow \downarrow \downarrow \downarrow \\
& \underbrace{1}_{k_{4}^{\prime \prime}} \underbrace{-101}_{k_{3}^{\prime \prime}} \underbrace{010}_{k_{2}^{\prime \prime}} \underbrace{111}_{k_{1}^{\prime \prime}} \underbrace{-010}_{k_{0}^{\prime \prime}}
\end{aligned}
$$

Sandy Bridge details

sign exponent

mantissa

Depiction of $\operatorname{top}(f)$

Sandy Bridge: field element representation

- Use double-precision floating points
- Use double-precision floating points
- Allows $4 \times$ vectorized operations using SIMD instructions
- Use double-precision floating points
- Allows $4 \times$ vectorized operations using SIMD instructions
- Radix- $2^{21.25}$ redundant representation

Sandy Bridge: field element representation

- Use double-precision floating points
- Allows $4 \times$ vectorized operations using SIMD instructions
- Radix- $2^{21.25}$ redundant representation
- Use 12 limbs to represent 255-bit numbers

Sandy Bridge: field element representation

- Use double-precision floating points
- Allows $4 \times$ vectorized operations using SIMD instructions
- Radix- $2^{21.25}$ redundant representation
- Use 12 limbs to represent 255-bit numbers
- l.e. $f=f_{0}+f_{1}+\ldots+f_{11}$

Sandy Bridge: field element representation

- Carry
- $\operatorname{TOP}\left(f_{i}\right)$: force loss of precision
- Then, move "high" bits to next limb

Sandy Bridge: field element representation

- Carry
- $\operatorname{TOP}\left(f_{i}\right)$: force loss of precision
- Then, move "high" bits to next limb
- Addition
- $(f+g)_{i}=f_{i}+g_{i}$
- $(f-g)_{i}=f_{i}-g_{i}$

Sandy Bridge: field element representation

- Carry
- $\operatorname{TOP}\left(f_{i}\right)$: force loss of precision
- Then, move "high" bits to next limb
- Addition
- $(f+g)_{i}=f_{i}+g_{i}$
- $(f-g)_{i}=f_{i}-g_{i}$
- Multiplication
- $(f \cdot g)_{k}=\sum_{i+j=k} f_{i} g_{i}+\sum_{i+j=k+12}\left(2^{-255} \cdot 19\right) f_{i} g_{i}$
- Optimized using Karatsuba's multiplication

Addition formulas

- Use Renes-Costello-Batina formulas
- Rewrite using graphs into vectorized operations
- Implement using field arithmetic functions

Point doubling

dbl_generic

Legend

add

subtract
triple
multiply by small constant
multiply
square

Point doubling

Legend

add

triple

multiply by small constant
multiply

Point addition

meat came

Point addition

Legend

multiply by small constant
multiply

Figure: Measured cycle counts

Implementation	SB	IB	H
Chou16 [Cho16]	$159128^{\text {a }}$	$156995^{\text {a }}$	$155823{ }^{\text {b }}$
Faz-Hernández-Lopez15 [FL15]	-	-	$\approx 156500^{\text {c }}$
OLHF18 [OLH $\left.{ }^{+} 18\right]$	-	-	$138963{ }^{\text {a }}$
Fujii-Aranha19 [FA19]	-	-	-
Haase-Labrique19 [HL19]	-	-	
Curve13318 (this work)	$389546^{\text {b }}$	$382966^{\text {b }}$	$204643{ }^{\text {b }}$
Ed25519 verify	$221988^{\text {d }}$	$206080^{\text {d }}$	$184052^{\text {d }}$
slowdown	$2.45 \times$	$2.44 \times$	$1.47 \times$
${ }^{a}$ As reported in the respective publication.			
${ }^{c}$ As reported in [FL15]. This publication has been padded with zeros.	expressed	eir benchm	rks in kcc. As

