
The complete cost of cofactor h = 1

Implementing Weierstrass curves with complete formulas

Peter Schwabe Daan Sprenkels

18 December 2019

Radboud University,

peter@cryptojedi.org, daan@dsprenkels.com

1

mailto:peter@cryptojedi.org
mailto:daan@dsprenkels.com

Introduction

Some history

I Traditionally, we use various different Weierstraß curves

I Considered unsafe because of incomplete formulas

I 2006: Curve25519 [Ber06] proposed as better alternative

2

Cofactor (in)security

Interesting cases of cofactor insecurity in protocols (mis)using

Curve25519:

I 2017: [lfS17] reported major vulnerability in Monero

I 2019: [CJ19] found three other vulnerabilities caused by

cofactor insecurity

3

Cofactor (in)security

Interesting cases of cofactor insecurity in protocols (mis)using

Curve25519:

I 2017: [lfS17] reported major vulnerability in Monero

I 2019: [CJ19] found three other vulnerabilities caused by

cofactor insecurity

3

The Monero vulnerability

I Transaction involves a ring signature

I Trivial case: ring size is 1

I Double-spending is prevented by a key image I

• I binds the transaction to signer’s public key P

• Binding is in zero-knowledge

• Key image I should be unique

4

The Monero vulnerability

I Transaction involves a ring signature

I Trivial case: ring size is 1

I Double-spending is prevented by a key image I

• I binds the transaction to signer’s public key P

• Binding is in zero-knowledge

• Key image I should be unique

4

The Monero vulnerability

I Transaction involves a ring signature

I Trivial case: ring size is 1

I Double-spending is prevented by a key image I

• I binds the transaction to signer’s public key P

• Binding is in zero-knowledge

• Key image I should be unique

4

The Monero vulnerability

I Transaction involves a ring signature

I Trivial case: ring size is 1

I Double-spending is prevented by a key image I

• I binds the transaction to signer’s public key P

• Binding is in zero-knowledge

• Key image I should be unique

4

The Monero vulnerability

I Transaction involves a ring signature

I Trivial case: ring size is 1

I Double-spending is prevented by a key image I

• I binds the transaction to signer’s public key P

• Binding is in zero-knowledge

• Key image I should be unique

4

Monero transactions (simplified)

I Have generators G1,G2; private key x ; public key P; key image I .

I signx(m)

• Sign m with private key x

• Choose random u ∈R hZ`

• Compute commitment a2 = [u]G2; c = H(m, a1, a2);

r = u + cx

• Output signature s = (a1, a2, r)

I verifyP,I (m, s)

• [r]G1
?
= a1 + [c]P

• [r]G2
?
= a2 + [c]I

• I unique?

5

Monero transactions (simplified)

I Have generators G1,G2; private key x ; public key P; key image I .

I signx(m)

• Sign m with private key x

• Choose random u ∈R hZ`

• Compute commitment a2 = [u]G2; c = H(m, a1, a2);

r = u + cx

• Output signature s = (a1, a2, r)

I verifyP,I (m, s)

• [r]G1
?
= a1 + [c]P

• [r]G2
?
= a2 + [c]I

• I unique? 5

Attacking Monero signatures

I Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r]G2 = a2 + [c]I = a2 + [c]I ′,

where I 6= I ′.

I Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.

I Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[c
α

]
[α]Tα

= a2 + [c]I +
[c
α

]
O

= a2 + [c]I

6

Attacking Monero signatures

I Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r]G2 = a2 + [c]I = a2 + [c]I ′,

where I 6= I ′.

I Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.

I Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[c
α

]
[α]Tα

= a2 + [c]I +
[c
α

]
O

= a2 + [c]I

6

Attacking Monero signatures

I Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r]G2 = a2 + [c]I = a2 + [c]I ′,

where I 6= I ′.

I Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.

I Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[c
α

]
[α]Tα

= a2 + [c]I +
[c
α

]
O

= a2 + [c]I

6

Attacking Monero signatures

I Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r]G2 = a2 + [c]I = a2 + [c]I ′,

where I 6= I ′.

I Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.

I Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[c
α

]
[α]Tα

= a2 + [c]I +
[c
α

]
O

= a2 + [c]I

6

Attacking Monero signatures

I Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r]G2 = a2 + [c]I = a2 + [c]I ′,

where I 6= I ′.

I Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.

I Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[c
α

]
[α]Tα

= a2 + [c]I +
[c
α

]
O

= a2 + [c]I

6

Attacking Monero signatures

I Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r]G2 = a2 + [c]I = a2 + [c]I ′,

where I 6= I ′.

I Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.

I Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[c
α

]
[α]Tα

= a2 + [c]I +
�
�
��

[c
α

]
O

= a2 + [c]I

6

Attacking Monero signatures

I Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r]G2 = a2 + [c]I = a2 + [c]I ′,

where I 6= I ′.

I Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.

I Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[c
α

]
[α]Tα

= a2 + [c]I +
�
�
��

[c
α

]
O

= a2 + [c]I

6

Surely this could have been prevented?

Easy fix:

I Protocol assumed [r]G2 = a2 + [c]I , only for a single I

I Not the case for Curve25519

I Fix: check if the order of I is `

• i.e. check [`]I
?
= O

• Fun fact: this check makes the verification 2× slower

7

Surely this could have been prevented?

Easy fix:

I Protocol assumed [r]G2 = a2 + [c]I , only for a single I

I Not the case for Curve25519

I Fix: check if the order of I is `

• i.e. check [`]I
?
= O

• Fun fact: this check makes the verification 2× slower

7

Surely this could have been prevented?

Easy fix:

I Protocol assumed [r]G2 = a2 + [c]I , only for a single I

I Not the case for Curve25519

I Fix: check if the order of I is `

• i.e. check [`]I
?
= O

• Fun fact: this check makes the verification 2× slower

7

Surely this could have been prevented?

Easy fix:

I Protocol assumed [r]G2 = a2 + [c]I , only for a single I

I Not the case for Curve25519

I Fix: check if the order of I is `

• i.e. check [`]I
?
= O

• Fun fact: this check makes the verification 2× slower

7

Why didn’t they validate points?

My guess:

(highlight added by me)

8

Why didn’t they validate points?

My guess:

(highlight added by me)

8

Surely this could have been prevented?

Easy fix:

I Protocol assumed [r]G2 = a2 + [c]I , only for a single I

I Fix: check if the order of I is `

• i.e. check [`]I
?
= O

I Better fix: use a prime-order curve

I Best fix: use Ristretto [Ham15, dVGT+19]

9

Surely this could have been prevented?

Easy fix:

I Protocol assumed [r]G2 = a2 + [c]I , only for a single I

I Fix: check if the order of I is `

• i.e. check [`]I
?
= O

I Better fix: use a prime-order curve

I Best fix: use Ristretto [Ham15, dVGT+19]

9

Research question

I Curve25519: nontrivial cofactor

I Weierstraß: slow or incomplete formulas

I But how much slower exactly?

10

Research question

I Curve25519: nontrivial cofactor

I Weierstraß: slow or incomplete formulas

I But how much slower exactly?

10

Research question

What is the actual performance benefit of Curve25519 over

traditional (Weierstrass) curves when using complete formulas?

11

Our contribution

Our research:

I Implement variable base-point scalar multiplication

• for a prime-order curve,

• that looks similar to Curve25519,

• using complete formulas,

• on Sandy Bridge, Haswell, and Cortex M4.

I Compare performance with Curve25519

12

Our contribution

Our research:

I Implement variable base-point scalar multiplication

• for a prime-order curve,

• that looks similar to Curve25519,

• using complete formulas,

• on Sandy Bridge, Haswell, and Cortex M4.

I Compare performance with Curve25519

12

Selecting a curve

Selecting a curve

I I.e. E : y2 = x3 − 3x + 13318, defined over F2255−19.

I Prime-order curve; same field as Curve25519

13

Selecting a curve

I I.e. E : y2 = x3 − 3x + 13318, defined over F2255−19.

I Prime-order curve; same field as Curve25519

13

Implementation

Scalar multiplication

I Use left-to-right fixed-window method (w = 5)

I Uses 263 · double + 59 · add operations

14

Scalar multiplication

I Use left-to-right fixed-window method (w = 5)

I Uses 263 · double + 59 · add operations

14

Addition formulas

Use the Renes-Costello-Batina addition formulas [RCB16]

I Complete formulas (no exceptions)

I No optimized software implementations published

15

Field arithmetic

Sandy Bridge

I AVX: has 2-way parallel 64-bit integer arithmetic

I AVX: has 4-way parallel floating-point arithmetic

I → use radix-221.25 representation based on [Ber04]

Haswell

I AVX2: has 4-way parallel 64-bit integer arithmetic

I → use radix-225.5 representation based on [BS12]

Cortex-M4

I Has powerful umlal and umaal instructions

I → use packed representation from [HL19]

16

Field arithmetic

Sandy Bridge

I AVX: has 2-way parallel 64-bit integer arithmetic

I AVX: has 4-way parallel floating-point arithmetic

I → use radix-221.25 representation based on [Ber04]

Haswell

I AVX2: has 4-way parallel 64-bit integer arithmetic

I → use radix-225.5 representation based on [BS12]

Cortex-M4

I Has powerful umlal and umaal instructions

I → use packed representation from [HL19]

16

Field arithmetic

Sandy Bridge

I AVX: has 2-way parallel 64-bit integer arithmetic

I AVX: has 4-way parallel floating-point arithmetic

I → use radix-221.25 representation based on [Ber04]

Haswell

I AVX2: has 4-way parallel 64-bit integer arithmetic

I → use radix-225.5 representation based on [BS12]

Cortex-M4

I Has powerful umlal and umaal instructions

I → use packed representation from [HL19]

16

Application of formulas

Sandy Bridge + Haswell

I Vectorize all multiplications and some other ops

I Shuffles etc. all implemented by hand

I Inline all the calls to field arithmetic

Cortex-M4

I Size-constrained device

I One-to-one implementation of formulas

I No function inlining

17

Application of formulas

Sandy Bridge + Haswell

I Vectorize all multiplications and some other ops

I Shuffles etc. all implemented by hand

I Inline all the calls to field arithmetic

Cortex-M4

I Size-constrained device

I One-to-one implementation of formulas

I No function inlining

17

Results

Benchmarks

Figure: cycle counts in kcc

Implementation SB H M4

Chou16 [Cho16] 159a 156b –

Faz-Hernández-López15 [FL15] – 156a –

OLHF18 [OLH+18] – 139a –

Fujii-Aranha19 [FA19] – – 907a

Haase-Labrique19 [HL19] – – 625a

Curve13318 (this work) 390b 205b 1 797b

slowdown 2.45× 1.47× 2.87×
a As reported in the respective publication.
b From own measurements.

18

Future work

I Use formulas from [SM17]

I Benchmark with ristretto255

19

Thank you!

The code is at https://github.com/dsprenkels/curve13318-all (public

domain)

Extra reading:

I Paper: https://dsprenkels.com/files/curve13318.pdf

I Monero vulnerability (1):

https://nickler.ninja/blog/2017/05/23/exploiting-low-order-

generators-in-one-time-ring-signatures/

I Monero vulnerability (2):

https://moderncrypto.org/mail-archive/curves/2017/000898.html

20

https://github.com/dsprenkels/curve13318-all
https://dsprenkels.com/files/curve13318.pdf
https://nickler.ninja/blog/2017/05/23/exploiting-low-order-generators-in-one-time-ring-signatures/
https://nickler.ninja/blog/2017/05/23/exploiting-low-order-generators-in-one-time-ring-signatures/
https://moderncrypto.org/mail-archive/curves/2017/000898.html

References i

Paulo S. L. M. Barreto.

Tweet, 2017.

https:

//twitter.com/pbarreto/status/869103226276134912.

Daniel J. Bernstein.

Floating-point arithmetic and message authentication,

2004.

http://cr.yp.to/papers.html#hash127.

21

https://twitter.com/pbarreto/status/869103226276134912
https://twitter.com/pbarreto/status/869103226276134912
http://cr.yp.to/papers.html#hash127

References ii

Daniel J. Bernstein.

Curve25519: new Diffie-Hellman speed records.

In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin,
editors, Public Key Cryptography – PKC 2006, volume 3958 of
LNCS, pages 207–228. Springer, 2006.

http://cr.yp.to/papers.html#curve25519.

Daniel J. Bernstein and Tanja Lange.

eBACS: ECRYPT Benchmarking of Cryptographic

Systems.

https://bench.cr.yp.to/results-sign.html (accessed

2019-10-03).

22

http://cr.yp.to/papers.html#curve25519
https://bench.cr.yp.to/results-sign.html

References iii

Daniel J. Bernstein and Peter Schwabe.

NEON crypto.

In Emmanuel Prouff and Patrick Schaumont, editors,
Cryptographic Hardware and Embedded Systems – CHES 2012,
volume 7428 of LNCS, pages 320–339. Springer, 2012.

http://cryptojedi.org/papers/#neoncrypto.

Tung Chou.

Sandy2x: New Curve25519 speed records.

In Orr Dunkelman and Liam Keliher, editors, Selected Areas in
Cryptography – SAC 2015, volume 9566 of LNCS, pages
145–160. Springer, 2016.

23

http://cryptojedi.org/papers/#neoncrypto

References iv

https://www.win.tue.nl/~tchou/papers/sandy2x.pdf.

Cas Cremers and Dennis Jackson.

Prime, order please! revisiting small subgroup and invalid

curve attacks on protocols using Diffie-Hellman.

In 2019 IEEE 32nd Computer Security Foundations Symposium
(CSF), pages 78–93, 2019.

https://eprint.iacr.org/2019/526.

24

https://www.win.tue.nl/~tchou/papers/sandy2x.pdf
https://eprint.iacr.org/2019/526

References v

Henry de Valence, Jack Grigg, George Tankersley, Filippo

Valsorda, and Isis Lovecruft.

The ristretto255 group.

IETF CFRG Internet Draft, 2019.

https://tools.ietf.org/html/draft-hdevalence-cfrg-

ristretto-01 (accessed 2019-07-31).

Hayato Fujii and Diego F. Aranha.

Curve25519 for the Cortex-M4 and Beyond.

In Tanja Lange and Orr Dunkelman, editors, Progress in
Cryptology – LATINCRYPT 2017, volume 11368 of LNCS,
pages 109–127. Springer, 2019.

25

https://tools.ietf.org/html/draft-hdevalence-cfrg-ristretto-01
https://tools.ietf.org/html/draft-hdevalence-cfrg-ristretto-01

References vi

http://www.cs.haifa.ac.il/~orrd/LC17/paper39.pdf.

Armando Faz-Hernández and Julio López.

Fast implementation of Curve25519 using AVX2.

In Kristin Lauter and Francisco Rodŕıguez-Henŕıquez, editors,

Progress in Cryptology – LATINCRYPT 2015, volume 9230 of

LNCS, pages 329–345. Springer, 2015.

Mike Hamburg.

Decaf: Eliminating cofactors through point compression.

26

http://www.cs.haifa.ac.il/~orrd/LC17/paper39.pdf

References vii

In Rosario Gennaro and Matthew Robshaw, editors, Advances in
Cryptology – CRYPTO 2015, volume 9215 of LNCS, pages
705–723. Springer, 2015.

https://www.shiftleft.org/papers/decaf/.

Björn Haase and Benôıt Labrique.

AuCPace: Efficient verifier-based PAKE protocol tailored

for the IIoT.

IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 1–48, 2019.

https:

//tches.iacr.org/index.php/TCHES/article/view/7384.

27

https://www.shiftleft.org/papers/decaf/
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384

References viii

luigi1111 and Riccardo “fluffypony” Spagni.

Disclosure of a major bug in CryptoNote based

currencies.

Post on the Monero website, 2017.

https://www.getmonero.org/2017/05/17/disclosure-of-a-

major-bug-in-cryptonote-based-currencies.html (accessed

2019-07-31).

28

https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html

References ix

Thomaz Oliveira, Julio López, Hüseyin Hışıl, Armando

Faz-Hernández, and Francisco Rodŕıguez-Henŕıquez.

How to (Pre-)Compute a Ladder.

In Carlisle Adams and Jan Camenisch, editors, Selected Areas in
Cryptography – SAC 2017, volume 10719 of LNCS, pages
172–191. Springer, 2018.

https://eprint.iacr.org/2017/264.pdf.

29

https://eprint.iacr.org/2017/264.pdf

References x

Joost Renes, Craig Costello, and Lejla Batina.

Complete addition formulas for prime order elliptic

curves.

In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in
Cryptology – Eurocrypt 2016, volume 9230 of LNCS, pages
403–428. Springer, 2016.

http://eprint.iacr.org/2015/1060.

30

http://eprint.iacr.org/2015/1060

References xi

Ruggero Susella and Sofia Montrasio.

A compact and exception-free ladder for all short

Weierstrass elliptic curves.

In Kerstin Lemke-Rust and Michael Tunstall, editors, Smart

Card Research and Advanced Applications, volume 10146 of

LNCS, pages 156–173. Springer, 2017.

31

Preliminaries

Elliptic curves

E : y2 = x3 + ax + b

Elliptic curves

E : y2 = x3 + ax + b

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Elliptic curves: addition

E : y2 = x3 + ax + b

−4 −2 0 2 4

x

−4

−2

0

2

4

y

P

Q

−R

R

Elliptic curves: doubling

E : y2 = x3 + ax + b

−4 −2 0 2 4

x

−4

−2

0

2

4

y

P

−R

R

Elliptic curves

I Coordinates include the point at infinity O

• Define P +O = P

I Curve equation: E : y2 = x3 + ax + b

I Coordinates are defined over a field Fq

• I.e. integers modulo q

Elliptic curves

I Coordinates include the point at infinity O

• Define P +O = P

I Curve equation: E : y2 = x3 + ax + b

I Coordinates are defined over a field Fq

• I.e. integers modulo q

Elliptic curves

I Coordinates include the point at infinity O

• Define P +O = P

I Curve equation: E : y2 = x3 + ax + b

I Coordinates are defined over a field Fq

• I.e. integers modulo q

Elliptic curves: actually

E : y2 = x3 − 3x + 1 defined over F11

0 1 2 3 4 5 6 7 8 9 10 11

x

−5

−4

−3

−2

−1

0

1

2

3

4

5

y

Elliptic curves: actual addition

E : y2 = x3 − 3x + 1 defined over F11

0 1 2 3 4 5 6 7 8 9 10 11

x

−5

−4

−3

−2

−1

0

1

2

3

4

5

y

P

Q

−R

R

Group arithmetic

I We can do arithmetic with these rules! :)

I Addition: P + Q

I Subtraction: P − Q

I Neutral element: O, i.e. “zero”

I Scalar multiplication: [k]P = P + P + ... + P︸ ︷︷ ︸
k times

I Discrete log problem:

given P,Q where [k]P = Q, hard to find k

Group arithmetic

I We can do arithmetic with these rules! :)

I Addition: P + Q

I Subtraction: P − Q

I Neutral element: O, i.e. “zero”

I Scalar multiplication: [k]P = P + P + ... + P︸ ︷︷ ︸
k times

I Discrete log problem:

given P,Q where [k]P = Q, hard to find k

Group arithmetic

I We can do arithmetic with these rules! :)

I Addition: P + Q

I Subtraction: P − Q

I Neutral element: O, i.e. “zero”

I Scalar multiplication: [k]P = P + P + ... + P︸ ︷︷ ︸
k times

I Discrete log problem:

given P,Q where [k]P = Q, hard to find k

Elliptic curves are cyclic

I Points form a cycle:

O +P−−→ P
+P−−→ [2]P

+P−−→ [3]P
+P−−→ ...

+P−−→ [n − 1]P
+P−−→ O

I The order n should contain a large prime factor

I Only one cycle if n is prime

Elliptic curves are cyclic

I Points form a cycle:

O +P−−→ P
+P−−→ [2]P

+P−−→ [3]P
+P−−→ ...

+P−−→ [n − 1]P
+P−−→ O︸ ︷︷ ︸

n steps

I The order n should contain a large prime factor

I Only one cycle if n is prime

Cofactors

I If n is not a prime

Then n = h · `

I I.e. small loops are possible:

E.g. if 4|n, then there is a point T4:

O +T4−−→ T4
+T4−−→ [2]T4

+T4−−→ [3]T4
+T4−−→ O︸ ︷︷ ︸

only 4 steps!

I h is called the cofactor

I This property is often harmless

• I.e. sometimes it’s the opposite of harmless

Cofactors

I If n is not a prime

Then n = h · `

I I.e. small loops are possible:

E.g. if 4|n, then there is a point T4:

O +T4−−→ T4
+T4−−→ [2]T4

+T4−−→ [3]T4
+T4−−→ O︸ ︷︷ ︸

only 4 steps!

I h is called the cofactor

I This property is often harmless

• I.e. sometimes it’s the opposite of harmless

Cofactors

I If n is not a prime

Then n = h · `

I I.e. small loops are possible:

E.g. if 4|n, then there is a point T4:

O +T4−−→ T4
+T4−−→ [2]T4

+T4−−→ [3]T4
+T4−−→ O︸ ︷︷ ︸

only 4 steps!

I h is called the cofactor

I This property is often harmless

• I.e. sometimes it’s the opposite of harmless

Cofactors

I If n is not a prime

Then n = h · `

I I.e. small loops are possible:

E.g. if 4|n, then there is a point T4:

O +T4−−→ T4
+T4−−→ [2]T4

+T4−−→ [3]T4
+T4−−→ O︸ ︷︷ ︸

only 4 steps!

I h is called the cofactor

I This property is often harmless

• I.e. sometimes it’s the opposite of harmless

Double-and-add

Double-and-add algorithm

function DoubleAndAdd(k ,P) . Compute [k]P

R ← O
for i from n − 1 down to 0 do

R ← [2]R . Doubling

if ki = 1 then

R ← R + P . Addition

else

R ← R +O . Addition

end if

end for

return R

end function

Fixed-window double-and-add

function FixedWindow(k ,P) . Compute [k]P

k ′ ←Windowsw (k)

Precompute ([2]P, ... , [2w − 1]P)

R ← O
for i from n

w − 1 down to 0 do

for j from 0 to w − 1 do

R ← [2]R . w doublings

end for

if k ′i 6= 0 then

R ← R + [k ′i]P . Addition

else

R ← R +O . Addition

end if

end for

return R

end function

Signed double-and-add

function SignedFixedWindow(k ,P) . Compute [k]P

k ′ ← RecodeSigned(Windowsw (k))

Precompute ([2]P, ... , [2w−1]P)

R ← O
for i from n

w − 1 down to 0 do

for j from 0 to w − 1 do

R ← [2]R . w doublings

end for

if k ′i > 0 then

R ← R + [k ′i]P . Addition

else if k ′i < 0 then

R ← R − [−k ′i]P . Addition

else

R ← R +O . Addition

end if

end for

return R

end function

Implemented signed double-and-add

function ScalarMultiplication(k ,P) . Compute [k]P

T← (O,P, ... , [16]P) . Precompute ([2]P, ... , [16]P)

k ′ ← RecodeSigned(Windows5(k))

R ← O
for i from 50 down to 0 do

for j from 0 to 4 do

R ← [2]R . 5 doublings

end for

if k ′i < 0 then

R ← R − T−k′
i

. Addition

else

R ← R + Tk′
i

. Addition

end if

end for

return R . R = (XR : YR : ZR)

end function

Signed windows

k ′3 k ′2 k ′1 k ′0

1011 0010 0110 1110k =

Signed window recoding

k ′′4 k ′′3 k ′′2 k ′′1 k ′′0

1011 0010 0110 1110

1 −101 010 111 −010

k =

Sandy Bridge details

sign exponent mantissa

63 52 0

Depiction of top(f)

253bi+1 253bi bi+1 bi

? ?fi :

+ 1 1 0

+
ci :

0 0+ 1 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ?z ′:

+ 1 1 0

−
ci :

? 0 0result:

Sandy Bridge: field element representation

I Use double-precision floating points

I Allows 4× vectorized operations using SIMD instructions

I Radix-221.25 redundant representation

I Use 12 limbs to represent 255-bit numbers

• I.e. f = f0 + f1 + ... + f11

Sandy Bridge: field element representation

I Use double-precision floating points

I Allows 4× vectorized operations using SIMD instructions

I Radix-221.25 redundant representation

I Use 12 limbs to represent 255-bit numbers

• I.e. f = f0 + f1 + ... + f11

Sandy Bridge: field element representation

I Use double-precision floating points

I Allows 4× vectorized operations using SIMD instructions

I Radix-221.25 redundant representation

I Use 12 limbs to represent 255-bit numbers

• I.e. f = f0 + f1 + ... + f11

Sandy Bridge: field element representation

I Use double-precision floating points

I Allows 4× vectorized operations using SIMD instructions

I Radix-221.25 redundant representation

I Use 12 limbs to represent 255-bit numbers

• I.e. f = f0 + f1 + ... + f11

Sandy Bridge: field element representation

I Use double-precision floating points

I Allows 4× vectorized operations using SIMD instructions

I Radix-221.25 redundant representation

I Use 12 limbs to represent 255-bit numbers

• I.e. f = f0 + f1 + ... + f11

Sandy Bridge: field element representation

I Carry

• top(fi): force loss of precision

• Then, move “high” bits to next limb

I Addition

• (f + g)i = fi + gi

• (f − g)i = fi − gi

I Multiplication

• (f · g)k =
∑

i+j=k figi +
∑

i+j=k+12

(
2−255 · 19

)
figi

• Optimized using Karatsuba’s multiplication

Sandy Bridge: field element representation

I Carry

• top(fi): force loss of precision

• Then, move “high” bits to next limb

I Addition

• (f + g)i = fi + gi

• (f − g)i = fi − gi

I Multiplication

• (f · g)k =
∑

i+j=k figi +
∑

i+j=k+12

(
2−255 · 19

)
figi

• Optimized using Karatsuba’s multiplication

Sandy Bridge: field element representation

I Carry

• top(fi): force loss of precision

• Then, move “high” bits to next limb

I Addition

• (f + g)i = fi + gi

• (f − g)i = fi − gi

I Multiplication

• (f · g)k =
∑

i+j=k figi +
∑

i+j=k+12

(
2−255 · 19

)
figi

• Optimized using Karatsuba’s multiplication

Addition formulas

I Use Renes-Costello-Batina formulas

I Rewrite using graphs into vectorized operations

I Implement using field arithmetic functions

Point doubling
dbl_generic

x yz

x3

31

y3

27

z3

34

1

2

3 4

5

6

78

9

10

11

1213

14 15

16

17 18

19

20

21

22

23

24

25

26

28

29

30

32

33

dbl_4x (3M + 4c)

extra carry operation

xy z

x3

31

y3

27

z3

3214

1312

15

5

2

34

8
⟦-b/2⟧

3

17
16
⟦-3⟧

18
⟦2b⟧

6

24
23
⟦3⟧

128

2630

9
= -a₉/2 19 25

22 2529a

4

11
10
7

⟦-6⟧

34
33

29b
⟦8⟧

11

22
21
⟦-3⟧

20
= -a₂₀

Legend

add

subtract

triple

multiply by small constant

multiply

square

Point doubling

dbl_generic

x yz

x3

31

y3

27

z3

34

1

2

3 4

5

6

78

9

10

11

1213

14 15

16

17 18

19

20

21

22

23

24

25

26

28

29

30

32

33

dbl_4x (3M + 4c)

extra carry operation

xy z

x3

31

y3

27

z3

3214

1312

15

5

2

34

8
⟦-b/2⟧

3

17
16
⟦-3⟧

18
⟦2b⟧

6

24
23
⟦3⟧

128

2630

9
= -a₉/2 19 25

22 2529a

4

11
10
7

⟦-6⟧

34
33

29b
⟦8⟧

11

22
21
⟦-3⟧

20
= -a₂₀

Legend

add

subtract

triple

multiply by small constant

multiply

square

Point addition
add_generic

x1 y1z1 x2 y2z2

x3

40

y3

38

z3

43

1 23 4 5

67

8

9 10

1112

13

14 15

1617

18 19

20

21

22

23 24

25

26

27

28

29

30

31

32

33

34

3536

37 3941

42

add_4x (3M and 4c)

extra carry after operation

x1 y1z1x2y2z2

x3

40

y3

38

z3

43

1 23 16

1415

192518

6

45

11

910

36

33
32

27b
26b
⟦3⟧

31
30
⟦3⟧

37

2324

35

13

39

8

4142

34 29

22
21
⟦3⟧

20

28

27a
26a
⟦3⟧

7 1217

Legend

add

subtract

triple

multiply by small constant

multiply

Point addition

add_generic

x1 y1z1 x2 y2z2

x3

40

y3

38

z3

43

1 23 4 5

67

8

9 10

1112

13

14 15

1617

18 19

20

21

22

23 24

25

26

27

28

29

30

31

32

33

34

3536

37 3941

42

add_4x (3M and 4c)

extra carry after operation

x1 y1z1x2y2z2

x3

40

y3

38

z3

43

1 23 16

1415

192518

6

45

11

910

36

33
32

27b
26b
⟦3⟧

31
30
⟦3⟧

37

2324

35

13

39

8

4142

34 29

22
21
⟦3⟧

20

28

27a
26a
⟦3⟧

7 1217

Legend

add

subtract

triple

multiply by small constant

multiply

Figure: Measured cycle counts

Implementation SB IB H M4

Chou16 [Cho16] 159 128a 156 995a 155 823b –

Faz-Hernández-Lopez15 [FL15] – – ≈ 156 500c –

OLHF18 [OLH+18] – – 138 963a –

Fujii-Aranha19 [FA19] – – – 907 240a

Haase-Labrique19 [HL19] – – – 625 358a

Curve13318 (this work) 389 546b 382 966b 204 643b 1 797 451b

Ed25519 verify 221 988d 206 080d 184 052d –

slowdown 2.45× 2.44× 1.47× 2.87×
a As reported in the respective publication.
b From own measurements.
c As reported in [FL15]. This publication expressed their benchmarks in kcc. As such, this value

has been padded with zeros.
d Cycle counts reported on Bernstein and Lange’s eBACS website [BL].

	Introduction
	Selecting a curve
	Implementation
	Results
	Appendix

