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Introduction



Some history

I Traditionally, we use various different Weierstraß curves

I Considered unsafe because of incomplete formulas

I 2006: Curve25519 [Ber06] proposed as better alternative
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Cofactor (in)security

Interesting cases of cofactor insecurity in protocols (mis)using

Curve25519:

I 2017: [lfS17] reported major vulnerability in Monero

I 2019: [CJ19] found three other vulnerabilities caused by

cofactor insecurity
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The Monero vulnerability

I Transaction involves a ring signature

I Trivial case: ring size is 1

I Double-spending is prevented by a key image I

• I binds the transaction to signer’s public key P

• Binding is in zero-knowledge

• Key image I should be unique
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Monero transactions (simplified)

I Have generators G1,G2; private key x ; public key P; key image I .

I signx(m)

• Sign m with private key x

• Choose random u ∈R hZ`

• Compute commitment a2 = [u]G2; c = H(m, a1, a2);

r = u + cx

• Output signature s = (a1, a2, r)

I verifyP,I (m, s)

• [r ]G1
?
= a1 + [c]P

• [r ]G2
?
= a2 + [c]I

• I unique?
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Attacking Monero signatures

I Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r ]G2 = a2 + [c]I = a2 + [c]I ′,

where I 6= I ′.

I Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.

I Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[ c
α

]
[α]Tα

= a2 + [c]I +
[ c
α

]
O

= a2 + [c]I
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Surely this could have been prevented?

Easy fix:

I Protocol assumed [r ]G2 = a2 + [c]I , only for a single I

I Not the case for Curve25519

I Fix: check if the order of I is `

• i.e. check [`]I
?
= O

• Fun fact: this check makes the verification 2× slower
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Why didn’t they validate points?

My guess:

(highlight added by me)
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Surely this could have been prevented?

Easy fix:

I Protocol assumed [r ]G2 = a2 + [c]I , only for a single I

I Fix: check if the order of I is `

• i.e. check [`]I
?
= O

I Better fix: use a prime-order curve

I Best fix: use Ristretto [Ham15, dVGT+19]
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Research question

I Curve25519: nontrivial cofactor

I Weierstraß: slow or incomplete formulas

I But how much slower exactly?
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Research question

What is the actual performance benefit of Curve25519 over

traditional (Weierstrass) curves when using complete formulas?
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Our contribution

Our research:

I Implement variable base-point scalar multiplication

• for a prime-order curve,

• that looks similar to Curve25519,

• using complete formulas,

• on Sandy Bridge, Haswell, and Cortex M4.

I Compare performance with Curve25519
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Selecting a curve



Selecting a curve

I I.e. E : y2 = x3 − 3x + 13318, defined over F2255−19.

I Prime-order curve; same field as Curve25519
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Implementation



Scalar multiplication

I Use left-to-right fixed-window method (w = 5)

I Uses 263 · double + 59 · add operations
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Scalar multiplication

I Use left-to-right fixed-window method (w = 5)
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Addition formulas

Use the Renes-Costello-Batina addition formulas [RCB16]

I Complete formulas (no exceptions)

I No optimized software implementations published
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Field arithmetic

Sandy Bridge

I AVX: has 2-way parallel 64-bit integer arithmetic

I AVX: has 4-way parallel floating-point arithmetic

I → use radix-221.25 representation based on [Ber04]

Haswell

I AVX2: has 4-way parallel 64-bit integer arithmetic

I → use radix-225.5 representation based on [BS12]

Cortex-M4

I Has powerful umlal and umaal instructions

I → use packed representation from [HL19]
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Application of formulas

Sandy Bridge + Haswell

I Vectorize all multiplications and some other ops

I Shuffles etc. all implemented by hand

I Inline all the calls to field arithmetic

Cortex-M4

I Size-constrained device

I One-to-one implementation of formulas

I No function inlining
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Results



Benchmarks

Figure: cycle counts in kcc

Implementation SB H M4

Chou16 [Cho16] 159a 156b –

Faz-Hernández-López15 [FL15] – 156a –

OLHF18 [OLH+18] – 139a –

Fujii-Aranha19 [FA19] – – 907a

Haase-Labrique19 [HL19] – – 625a

Curve13318 (this work) 390b 205b 1 797b

slowdown 2.45× 1.47× 2.87×
a As reported in the respective publication.
b From own measurements.
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Future work

I Use formulas from [SM17]

I Benchmark with ristretto255
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Thank you!

The code is at https://github.com/dsprenkels/curve13318-all (public

domain)

Extra reading:

I Paper: https://dsprenkels.com/files/curve13318.pdf

I Monero vulnerability (1):

https://nickler.ninja/blog/2017/05/23/exploiting-low-order-

generators-in-one-time-ring-signatures/

I Monero vulnerability (2):

https://moderncrypto.org/mail-archive/curves/2017/000898.html
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Elliptic curves: addition

E : y2 = x3 + ax + b
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Elliptic curves: doubling

E : y2 = x3 + ax + b
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Elliptic curves

I Coordinates include the point at infinity O

• Define P +O = P

I Curve equation: E : y2 = x3 + ax + b

I Coordinates are defined over a field Fq

• I.e. integers modulo q
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Elliptic curves: actually

E : y2 = x3 − 3x + 1 defined over F11
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Elliptic curves: actual addition

E : y2 = x3 − 3x + 1 defined over F11
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Group arithmetic

I We can do arithmetic with these rules! :)

I Addition: P + Q

I Subtraction: P − Q

I Neutral element: O, i.e. “zero”

I Scalar multiplication: [k]P = P + P + ... + P︸ ︷︷ ︸
k times

I Discrete log problem:

given P,Q where [k]P = Q, hard to find k
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Elliptic curves are cyclic

I Points form a cycle:

O +P−−→ P
+P−−→ [2]P

+P−−→ [3]P
+P−−→ ...

+P−−→ [n − 1]P
+P−−→ O

I The order n should contain a large prime factor

I Only one cycle if n is prime
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Cofactors

I If n is not a prime

Then n = h · `

I I.e. small loops are possible:

E.g. if 4|n, then there is a point T4:

O +T4−−→ T4
+T4−−→ [2]T4

+T4−−→ [3]T4
+T4−−→ O︸ ︷︷ ︸

only 4 steps!

I h is called the cofactor

I This property is often harmless

• I.e. sometimes it’s the opposite of harmless
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Double-and-add



Double-and-add algorithm

function DoubleAndAdd(k ,P) . Compute [k]P

R ← O
for i from n − 1 down to 0 do

R ← [2]R . Doubling

if ki = 1 then

R ← R + P . Addition

else

R ← R +O . Addition

end if

end for

return R

end function



Fixed-window double-and-add

function FixedWindow(k ,P) . Compute [k]P

k ′ ←Windowsw (k)

Precompute ([2]P, ... , [2w − 1]P)

R ← O
for i from n

w − 1 down to 0 do

for j from 0 to w − 1 do

R ← [2]R . w doublings

end for

if k ′i 6= 0 then

R ← R + [k ′i ]P . Addition

else

R ← R +O . Addition

end if

end for

return R

end function



Signed double-and-add

function SignedFixedWindow(k ,P) . Compute [k]P

k ′ ← RecodeSigned(Windowsw (k))

Precompute ([2]P, ... , [2w−1]P)

R ← O
for i from n

w − 1 down to 0 do

for j from 0 to w − 1 do

R ← [2]R . w doublings

end for

if k ′i > 0 then

R ← R + [k ′i ]P . Addition

else if k ′i < 0 then

R ← R − [−k ′i ]P . Addition

else

R ← R +O . Addition

end if

end for

return R

end function



Implemented signed double-and-add

function ScalarMultiplication(k ,P) . Compute [k]P

T← (O,P, ... , [16]P) . Precompute ([2]P, ... , [16]P)

k ′ ← RecodeSigned(Windows5(k))

R ← O
for i from 50 down to 0 do

for j from 0 to 4 do

R ← [2]R . 5 doublings

end for

if k ′i < 0 then

R ← R − T−k′
i

. Addition

else

R ← R + Tk′
i

. Addition

end if

end for

return R . R = (XR : YR : ZR)

end function



Signed windows

k ′3 k ′2 k ′1 k ′0

1011 0010 0110 1110k =



Signed window recoding

k ′′4 k ′′3 k ′′2 k ′′1 k ′′0

1011 0010 0110 1110

1 −101 010 111 −010

k =



Sandy Bridge details



sign exponent mantissa

63 52 0



Depiction of top(f )

253bi+1 253bi bi+1 bi

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?fi :

+ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+
ci :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0+ 1 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?z ′:

+ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−
ci :

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0result:



Sandy Bridge: field element representation

I Use double-precision floating points

I Allows 4× vectorized operations using SIMD instructions

I Radix-221.25 redundant representation

I Use 12 limbs to represent 255-bit numbers

• I.e. f = f0 + f1 + ... + f11
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Sandy Bridge: field element representation

I Carry

• top(fi ): force loss of precision

• Then, move “high” bits to next limb

I Addition

• (f + g)i = fi + gi

• (f − g)i = fi − gi

I Multiplication

• (f · g)k =
∑

i+j=k figi +
∑

i+j=k+12

(
2−255 · 19

)
figi

• Optimized using Karatsuba’s multiplication
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• Then, move “high” bits to next limb

I Addition

• (f + g)i = fi + gi

• (f − g)i = fi − gi

I Multiplication

• (f · g)k =
∑

i+j=k figi +
∑

i+j=k+12

(
2−255 · 19

)
figi

• Optimized using Karatsuba’s multiplication



Addition formulas

I Use Renes-Costello-Batina formulas

I Rewrite using graphs into vectorized operations

I Implement using field arithmetic functions



Point doubling
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Point addition
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Figure: Measured cycle counts

Implementation SB IB H M4

Chou16 [Cho16] 159 128a 156 995a 155 823b –

Faz-Hernández-Lopez15 [FL15] – – ≈ 156 500c –

OLHF18 [OLH+18] – – 138 963a –

Fujii-Aranha19 [FA19] – – – 907 240a

Haase-Labrique19 [HL19] – – – 625 358a

Curve13318 (this work) 389 546b 382 966b 204 643b 1 797 451b

Ed25519 verify 221 988d 206 080d 184 052d –

slowdown 2.45× 2.44× 1.47× 2.87×
a As reported in the respective publication.
b From own measurements.
c As reported in [FL15]. This publication expressed their benchmarks in kcc. As such, this value

has been padded with zeros.
d Cycle counts reported on Bernstein and Lange’s eBACS website [BL].
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