Compact Dilithium on Cortex M3 and Cortex M4

Denisa Greconici Matthias Kannwischer Daan Sprenkels

30 October 2020

Institute for Computing and Information Sciences - Digital Security
Radboud University Nijmegen

1. Introduction
2. Constant time multiplications on Cortex-M3
3. Optimizing performance
4. Optimization memory
5. Results
6. Conclusion

Introduction

NIST Post-Quantum Standardization Competition

- 2016 - NIST calls for proposals for PQC algorithms
- Key Encapsulation Mechanisms (KEMs) and Digital Signatures
- 2016 - NIST calls for proposals for PQC algorithms
- Key Encapsulation Mechanisms (KEMs) and Digital Signatures
- 2017-69 candidates qualified for round 1
- 2016 - NIST calls for proposals for PQC algorithms
- Key Encapsulation Mechanisms (KEMs) and Digital Signatures
- 2017-69 candidates qualified for round 1
- 2019-26 candidates qualified for round 2
- 2016 - NIST calls for proposals for PQC algorithms
- Key Encapsulation Mechanisms (KEMs) and Digital Signatures
- 2017-69 candidates qualified for round 1
- 2019-26 candidates qualified for round 2
- July 2020 - round 3 candidates announced
- 2016 - NIST calls for proposals for PQC algorithms
- Key Encapsulation Mechanisms (KEMs) and Digital Signatures
- 2017-69 candidates qualified for round 1
- 2019-26 candidates qualified for round 2
- July 2020 - round 3 candidates announced
- 7 finalists
- 8 alternative schemes
- 2016 - NIST calls for proposals for PQC algorithms
- Key Encapsulation Mechanisms (KEMs) and Digital Signatures
- 2017-69 candidates qualified for round 1
- 2019-26 candidates qualified for round 2
- July 2020 - round 3 candidates announced
- 7 finalists
- KEMs (Classic McEliece, Kyber, NTRU and Saber)
- Signatures (Dilithium, Falcon, and Rainbow)
- 8 alternative schemes
- KEMs (BIKE, FrodoKEM, HQC, NTRU Prime, SIKE)
- Signatures (GeMSS, Picnic, SPHINCS+)
- Signature scheme
- Part of CRYSTALS (with Kyber)
- One of the 3rd round finalists
- Signature scheme
- Part of CRYSTALS (with Kyber)
- One of the 3rd round finalists
- Fiat-Shamir with aborts
- Module-LWE and Module-SIS
- Signature scheme
- Part of CRYSTALS (with Kyber)
- One of the 3rd round finalists
- Fiat-Shamir with aborts
- Module-LWE and Module-SIS
- Small keys and signatures
- Operates in the polynomial ring $\mathbb{R}_{q}=\mathbb{Z}_{q}[X] /\left(X^{256}+1\right)$, with $q=8380417$ \Rightarrow Allows efficient polynomial multiplication with NTT
- Signature scheme
- Part of CRYSTALS (with Kyber)
- One of the 3rd round finalists
- Fiat-Shamir with aborts
- Module-LWE and Module-SIS
- Small keys and signatures
- Operates in the polynomial ring $\mathbb{R}_{q}=\mathbb{Z}_{q}[X] /\left(X^{256}+1\right)$, with $q=8380417$ \Rightarrow Allows efficient polynomial multiplication with NTT
- 4 security levels (3 of them target NIST security levels 1-3)

The Number-Theoretic Transform (NTT)

- Fast Fourier Transform (FFT) in finite field
- Let $g=g_{0}+g_{1} X+\ldots+g_{n-1} X^{n-1}$, polynomial in \mathbb{R}_{q}
- Representation of polynomial g :
- By its coefficients: $g_{0}, g_{1} \ldots g_{n-1}$
- By evaluating g at the powers of the n 'th primitive root of unity: $g\left(\omega^{0}\right), g\left(\omega^{1}\right) \ldots g\left(\omega^{n-1}\right)$
- Fast Fourier Transform (FFT) in finite field
- Let $g=g_{0}+g_{1} X+\ldots+g_{n-1} X^{n-1}$, polynomial in \mathbb{R}_{q}
- Representation of polynomial g :
- By its coefficients: $g_{0}, g_{1} \ldots g_{n-1}$
- By evaluating g at the powers of the n 'th primitive root of unity:

$$
g\left(\omega^{0}\right), g\left(\omega^{1}\right) \ldots g\left(\omega^{n-1}\right)
$$

- Formal definition of the NTT in Dilithium
- $\hat{g}=\operatorname{NTT}(g)=\sum_{i=0}^{n-1} \hat{g}_{i} X^{i}, \quad$ with $\quad \hat{g}_{i}=\sum_{j=0}^{n-1} \psi^{j} g_{j} \omega^{i j} ; \quad$ and
- $g=\operatorname{INTT}(\hat{g})=\sum_{i=0}^{n-1} g_{i} X^{i}, \quad$ with $\quad g_{i}=n^{-1} \psi^{-i} \sum_{j=0}^{n-1} \hat{g}_{j} \omega^{-i j}$.
- Polynomial Multiplication in \mathbb{R}_{q} $\mathbf{a} \cdot \mathbf{b}=\operatorname{INTT}(\operatorname{NTT}(\mathbf{a}) \circ \operatorname{NTT}(\mathrm{b}))$

Dilithium simplified

Dilithium simplified

Gen

$01 \mathbf{A} \leftarrow R_{q}^{k \times \ell}$
$02\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right) \leftarrow S_{\eta}^{\ell} \times S_{\eta}^{k}$
$03 \mathbf{t}:=\mathbf{A} \mathbf{s}_{1}+\mathbf{s}_{2}$
04 return $\left(p k=(\mathbf{A}, \mathbf{t}), s k=\left(\mathbf{A}, \mathbf{t}, \mathbf{s}_{1}, \mathbf{s}_{2}\right)\right)$
$\frac{\operatorname{Sign}(s k, M)}{05 \mathrm{z}:=\perp}$
06 while $\mathbf{z}=\perp$ do
$07 \quad \mathbf{y} \leftarrow S_{\gamma_{1}-1}^{\ell}$
$08 \quad \mathbf{w}_{1}:=\operatorname{HighBits}\left(\mathbf{A y}, 2 \gamma_{2}\right)$
$09 \quad c \in B_{60}:=\mathrm{H}\left(M \| \mathbf{w}_{1}\right)$
$10 \quad \mathbf{z}:=\mathbf{y}+c \mathbf{s}_{1}$
11 if $\|\mathbf{z}\|_{\infty} \geq \gamma_{1}-\beta$ or $\left.\| \operatorname{LowBits(Ay}-c \mathbf{s}_{2}, 2 \gamma_{2}\right) \|_{\infty} \geq \gamma_{2}-\beta$, then $\mathbf{z}:=\perp$
2 return $\sigma=(\mathbf{z}, c)$
$\frac{\operatorname{Verify}(p k, M, \sigma=(\mathbf{z}, c))}{13 \mathbf{w}_{1}^{\prime}:=\operatorname{HighBits}\left(\mathbf{A z}-c \mathbf{t}, 2 \gamma_{2}\right)}$
14 if return $\llbracket\|\mathbf{z}\|_{\infty}<\gamma_{1}-\beta \rrbracket$ and $\llbracket c=\mathrm{H}\left(M \| \mathbf{w}_{1}^{\prime}\right) \rrbracket$

Target platforms

- Arm Cortex M4(STM32F407-DISCOVERY)
- Arm Cortex M3 (AtmelSAM3X8E)
- Arm Cortex M4(STM32F407-DISCOVERY)
- NIST choice for PQC
- 32-bit, ARMv7e-M
- 1 MiB ROM, 196 KB RAM, 168 MHz
- 32-bit multiplications in 1 cycle (UMULL, SMULL, UMLAL, SMLAL)
- Arm Cortex M3 (AtmelSAM3X8E)
- Arm Cortex M4(STM32F407-DISCOVERY)
- NIST choice for PQC
- 32-bit, ARMv7e-M
- 1 MiB ROM, 196 KB RAM, 168 MHz
- 32-bit multiplications in 1 cycle (UMULL, SMULL, UMLAL, SMLAL)
- Arm Cortex M3 (AtmelSAM3X8E)
- Arduino Due
- 32-bit, ARMv7-M
- 512 KiB Flash, 96 KB RAM, 84 MHz
- Variable time 32-bit multiplications !

UMULL on M3

[^0]
Constant time multiplications

 on Cortex-M3- Variable time 32-bit multiplications
- But, 16 -bit multipliers are constant time MUL, MLS - 1 cycle; MLA - 2 cycles
- Variable time 32-bit multiplications
- But, 16 -bit multipliers are constant time MUL, MLS - 1 cycle; MLA - 2 cycles
- Our solution: use 16 -bit multipliers
\Rightarrow represent the 32 -bit values in radix 2^{16}
- Variable time 32-bit multiplications
- But, 16 -bit multipliers are constant time MUL, MLS - 1 cycle; MLA - 2 cycles
- Our solution: use 16 -bit multipliers
\Rightarrow represent the 32 -bit values in radix 2^{16}
- Let $a=2^{16} a_{1}+a_{0}$ and $b=2^{16} b_{1}+b_{0}$ with $0 \leq a_{0}, b_{0}<2^{16}$ and $-2^{15} \leq a_{1}, b_{1}<2^{15}$
- Variable time 32-bit multiplications
- But, 16 -bit multipliers are constant time MUL, MLS - 1 cycle; MLA - 2 cycles
- Our solution: use 16 -bit multipliers
\Rightarrow represent the 32 -bit values in radix 2^{16}
- Let $a=2^{16} a_{1}+a_{0}$ and $b=2^{16} b_{1}+b_{0}$ with $0 \leq a_{0}, b_{0}<2^{16}$ and $-2^{15} \leq a_{1}, b_{1}<2^{15}$
- Then $a b=2^{32} a_{1} b_{1}+2^{16}\left(a_{0} b_{1}+a_{1} b_{0}\right)+a_{0} b_{0}$, with $-2^{31} \leq a_{i} b_{j}<2^{31}$

Schoolbook multiplication

(slides handover)

Optimizing performance
(1) Applying the CRT
(2) $\{$ Unsigned $=>$ Signed $\}$ representation
(3) Merging layer

Applying the $C R T^{1}$

${ }^{1}$ Based on [BCLv19].

Applying the CRT^{1}

$$
\begin{gathered}
c=a \cdot b \\
\hat{a}=\operatorname{NTT}(a) \\
\hat{b}:=N T T(b) \\
\hat{c}:=\hat{a} \cdot \hat{b} \\
c=N^{-1}(c)
\end{gathered}
$$

${ }^{1}$ Based on [BCLv19].

Applying the CRT^{1}

$$
\begin{aligned}
& c=a \cdot b \\
& \hat{a}= \operatorname{NTT}(a) \\
& \hat{b}:= \operatorname{NTT}(b) \\
& \hat{c}:=\hat{a} \cdot \hat{b} \\
& c:=N T T^{-1}(c) \\
& \text { All } 32 \text { bit }
\end{aligned}
$$

${ }^{1}$ Based on [BCLv19].

Applying the $C R T^{1}$

$$
\begin{aligned}
c & =a \cdot b \\
a_{i} & =a \bmod q_{i} \\
b: & =b \bmod q_{i} \\
c_{i}=N T T^{-1} & \left(N T T\left(a_{i}\right) \propto N T T\left(b_{i}\right)\right) \\
c & =\operatorname{CRT}\left(c_{1}, \ldots, c_{k}\right)
\end{aligned}
$$

${ }^{1}$ Based on [BCLv19].

Applying the CRT ${ }^{1}$

$$
\begin{array}{rl}
c & =a \cdot b \\
a_{i}= & a \bmod q_{i} \\
b:= & \bmod q_{i} \\
c_{i}=N T T^{-1} & \left(N T T\left(a_{i}\right) \circ N T T\left(b_{i}\right)\right) \\
c= & C R T\left(c_{1}, \ldots, c_{k}\right) \\
16 b_{i} t & 11
\end{array}
$$

${ }^{1}$ Based on [BCLv19].

Applying the CRT

Applying the CRT

- NTT has to work in $\mathbb{Z}_{q_{i}} /\left(X^{256}+1\right)$
\Rightarrow choose q_{i} NTT primes

Applying the CRT

- NTT has to work in $\mathbb{Z}_{q_{i}} /\left(X^{256}+1\right)$
\Rightarrow choose q_{i} NTT primes
- $\prod_{i} q_{i}$ must be larger than coefficients in c !
- For Dilithium, need to split into 4 polynomials $\bmod q_{i}$
- NTT has to work in $\mathbb{Z}_{q_{i}} /\left(X^{256}+1\right)$
\Rightarrow choose q_{i} NTT primes
- $\prod_{i} q_{i}$ must be larger than coefficients in c !
- For Dilithium, need to split into 4 polynomials $\bmod q_{i}$
- Unfortunately, this is slower than doing schoolbook
- But it might be useful for other platforms :)
- Unsigned subtraction $a-b$ overflows if $a<b$
- Unsigned subtraction $a-b$ overflows if $a<b$
- All subtractions are $a-b \equiv(a+N q)-b$ to mitigate this

\{Unsigned $=>$ Signed\} representation

- Unsigned subtraction $a-b$ overflows if $a<b$
- All subtractions are $a-b \equiv(a+N q)-b$ to mitigate this
- Extra addition
- Numbers grow faster \Rightarrow more reductions needed

\{Unsigned $=>$ Signed \} representation

- Unsigned subtraction $a-b$ overflows if $a<b$
- All subtractions are $a-b \equiv(a+N q)-b$ to mitigate this
- Extra addition
- Numbers grow faster \Rightarrow more reductions needed
- Signed representation is better! :)

\{Unsigned $=>$ Signed\} representation

- Unsigned subtraction $a-b$ overflows if $a<b$
- All subtractions are $a-b \equiv(a+N q)-b$ to mitigate this
- Extra addition
- Numbers grow faster \Rightarrow more reductions needed
- Signed representation is better! :)
- No extra addition
- Numbers grow less \Rightarrow less reductions

Merging layers

- NTT (= FFT) recurses a binary tree

Merging layers

- NTT (= FFT) recurses a binary tree
- Depth first: Many reloads of twiddle factors
- Breadth first: Many loads/spills of coefficients

Merging layers

- NTT (= FFT) recurses a binary tree
- Depth first: Many reloads of twiddle factors
- Breadth first: Many loads/spills of coefficients
- Go for hybrid approach, i.e., merging layers

Merging layers (visualisation)

Merging layers (visualisation)

Merging layers (visualisation)

Merging layers (impl)

- M4: Merge 2 layers
- M3 (constant-time): No merged layers
- M3 (leaktime): Merge 2 layers

Optimization memory
(1) Storing A in flash (realistic setting)
(2) Storing A in SRAM ("vanilla" setting)
(3) Streaming A and y (how small can we go?)
(1) Storing A in flash (realistic setting)

- Can read A from flash during signing
- Needs extra flash space
(2) Storing A in SRAM ("vanilla" setting)
(3) Streaming A and y (how small can we go?)
(1) Storing A in flash (realistic setting)
- Can read A from flash during signing
- Needs extra flash space
(2) Storing A in SRAM ("vanilla" setting)
- Generate A once during signing
- Needs extra SRAM space
(3) Streaming A and y (how small can we go?)
(1) Storing A in flash (realistic setting)
- Can read A from flash during signing
- Needs extra flash space
(2) Storing A in SRAM ("vanilla" setting)
- Generate A once during signing
- Needs extra SRAM space
(3) Streaming A and y (how small can we go?)
- No extra space needed
- Likely to be very slow

```
\(\underline{\operatorname{Sign}(s k, M)}\)
\(\mathbf{A} \in R_{q}^{k \times \ell}:=\operatorname{ExpandA}(\rho) \quad \triangleright \mathbf{A}\) is generated and stored in NTT Representation as \(\hat{\mathbf{A}}\)
    \(\mu \in\{0,1\}^{384}:=\mathrm{CRH}(\operatorname{tr} \| M)\)
    \(\kappa:=0,(\mathbf{z}, \mathbf{h}):=\perp\)
    \(\rho^{\prime} \in\{0,1\}^{384}:=\mathrm{CRH}(K \| \mu)\) (or \(\rho^{\prime} \leftarrow\{0,1\}^{384}\) for randomized signing)
    while \((\mathbf{z}, \mathbf{h})=\perp\) do \(\quad \triangleright\) Pre-compute \(\hat{\mathbf{s}}_{1}:=\operatorname{NTT}\left(\mathbf{s}_{1}\right), \hat{\mathbf{s}}_{2}:=\operatorname{NTT}\left(\mathbf{s}_{2}\right)\), and \(\hat{\mathbf{t}}_{0}:=\operatorname{NTT}\left(\mathbf{t}_{0}\right)\)
        \(\mathbf{y} \in S_{\gamma_{1}-1}^{\ell}:=\operatorname{ExpandMask}\left(\rho^{\prime}, \kappa\right)\)
        \(\mathrm{w}:=\mathrm{Ay}\)
        \(\mathbf{w}_{1}:=\operatorname{HighBits}_{q}\left(\mathbf{w}, 2 \gamma_{2}\right)\)
        \(c \in B_{60}:=\mathrm{H}\left(\mu \| \mathbf{w}_{1}\right)\)
        \(\mathbf{z}:=\mathbf{y}+c \mathbf{s}_{1}\)
        \(\left(\mathbf{r}_{1}, \mathbf{r}_{0}\right):=\) Decompose \(_{q}\left(\mathbf{w}-c \mathbf{s}_{2}, 2 \gamma_{2}\right)\)
        \(\triangleright \mathrm{w}:=\operatorname{NTT}^{-1}(\hat{\mathbf{A}} \cdot \operatorname{NTT}(\mathbf{y}))\)
25 return \(\sigma=(\mathbf{z}, \mathbf{h}, c)\)
```


Results

Measuring performance

- M4: Use systick timer
- M3: Use the DWT cycle counter (CYCCNT)

Measuring performance

- M4: Use systick timer
- M3: Use the DWT cycle counter (CYCCNT)

Measuring stack usage
(1) Fill the stack with sentinel values
(2) Run the algorithm
(3) Count how many sentinel bytes were overwritten

				NTT	NTT $^{-1}$	\circ
Dilithium	[GKOS18]	constant-time	M4	10701	11662	-
	This work	constant-time	M4	8540	8923	1955
	This work	variable-time	M3	19347	21006	4899
	This work	constant-time	M3	33025	36609	8479

				NTT	NTT $^{-1}$	\circ
Dilithium	[GKOS18]	constant-time	M4	10701	11662	-
	This work	constant-time	M4	8540	8923	1955
	This work	variable-time	M3	19347	21006	4899
	This work	constant-time	M3	33025	36609	8479

- On Cortex M4 we have a 25% improvement
- (Leaktime) operations on M3 are $2.3 \times-2.5 \times$ slower
- Constant-time NTT $1.7 \times$ slower than leaktime

Algorithm/ strategy	Params	Work	Speed [kcc]	Stack [B]
KeyGen (1)	Dilithium2	This work	2267	7916
	Dilithium3	This work	3545	8940
	Dilithium4	This work	5086	9964
Sign (1)	Dilithium2	[RGCB19, scen. 2]	3640	-
	Dilithium2	This work	3097	14428
	Dilithium3	[RGCB19, scen. 2]	5495	-
	Dilithium3	This work	4578	17628
	Dilithium4	[RGCB19, scen. 2]	4733	-
	Dilithium4	This work	3768	20828
Verify	Dilithium2	This work	1259	9004
	Dilithium3	[GKOS18]	2342	54800
	Dilithium3	This work	1917	10028
	Dilithium4	This work	2720	11052

Results M4 strategy 2

Algotegy	Params	Work	Speed [kcc]	Stack [B]
KeyGen (2 \& 3)	Dilithium2	This work	1315	7916
	Dilithium3	[GKOS18]	2320	50488
	Dilithium3	This work	2013	8940
	Dilithium4	This work	2837	9964
Sign (2)	Dilithium2	[RGCB19, scen. 1]	4632	-
	Dilithium2	This work	3987	38300
	Dilithium3	[GKOS18]	8348	86568
	Dilithium3	[RGCB19, scen. 1]	7085	-
	Dilithium3	This work	6053	52756
	Dilithium4	[RGCB19, scen. 1]	7061	-
	Dilithium4	This work	6001	69276
Verify	Dilithium2	This work	1259	9004
	Dilithium3	[GKOS18]	2342	54800
	Dilithium3	This work	1917	10028
	Dilithium4	This work	2720	11052

Algorithm/ strategy	Params	Work	Speed [kcc]	Stack [B]
KeyGen (2 \& 3)	Dilithium2	This work	1315	7916
	Dilithium3	[GKOS18]	2320	50488
	Dilithium3	This work	2013	8940
	Dilithium4	This work	2837	9964
Sign (3)	Dilithium2	This work	13332	8924
	Dilithium3	This work	23550	9948
	Dilithium4	This work	22658	10972
Verify	Dilithium2	This work	1259	9004
	Dilithium3	[GKOS18]	2342	54800
	Dilithium3	This work	1917	10028
	Dilithium4	This work	2720	11052

Algorithm/ strategy	Params	Speed [kcc]	Stack [B]
KeyGen (1)	Dilithium2	2945	12631
	Dilithium3	4503	15703
	Dilithium4	6380	18783
Sign (1)	Dilithium2	5822	$14869^{\text {a }}$
	Dilithium3	8730	$18083^{\text {b }}$
	Dilithium4	7398	$18083^{\text {c }}$
Verify	Dilithium2	1541	8944
	Dilithium3	2321	9967
	Dilithium4	3260	10999

[^1]| Algorithm/
 strategy | Params | Speed [kcc] | Stack [B] |
| :--- | :--- | ---: | ---: |
| KeyGen (2 \& 3) | Dilithium2 | 1699 | 7983 |
| | Dilithium3 | 2562 | 9007 |
| | Dilithium4 | 3587 | 10031 |
| Sign (2) | Dilithium2 | 7115 | 39503 |
| | Dilithium3 | 10667 | 53959 |
| | Dilithium4 | 10031 | 70463 |
| Verify | Dilithium2 | 1541 | 8944 |
| | Dilithium3 | 2321 | 9967 |
| | Dilithium4 | 3260 | 10999 |

Algorithm/ strategy	Params	Speed [kcc]	Stack [B]
KeyGen (2 \& 3)	Dilithium2	1699	7983
	Dilithium3	2562	9007
	Dilithium4	3587	10031
Sign (3)	Dilithium2	18932	9463
	Dilithium3	33229	10495
	Dilithium4	31180	11511
Verify	Dilithium2	1541	8944
	Dilithium3	2321	9967
	Dilithium4	3260	10999

Performance results

Cortex M4

- New speed records! \o/
- $13 \%, 27 \%$, and 18% speedup compared to [GKOS18]
- $14 \%-20 \%$ speedup compared to [RGCB19]

Performance results

Cortex M4

- New speed records! \o/
- $13 \%, 27 \%$, and 18% speedup compared to [GKOS18]
- $14 \%-20 \%$ speedup compared to [RGCB19]

Cortex M3

- New speed records ${ }^{1}$
- Signing: always need $40,54,70 \mathrm{kB}$ of memory
- Signing: 24, 35, 48 kB can be flash instead of SRAM

[^2]
Cortex M4

- New speed records! \o/
- $13 \%, 27 \%$, and 18% speedup compared to [GKOS18]
- $14 \%-20 \%$ speedup compared to [RGCB19]

Cortex M3

- New speed records ${ }^{1}$
- Signing: always need $40,54,70 \mathrm{kB}$ of memory
- Signing: 24, 35, 48 kB can be flash instead of SRAM
- Keygen and Verify are always pretty cheap

[^3]
Memory results

Cortex M4

- Keygen and Verify are always pretty cheap
- Generally need $40,54,70 \mathrm{kB}$ of memory
- Strategy 1: $24,35,48 \mathrm{kB}$ can be flash instead of SRAM

Cortex M4

- Keygen and Verify are always pretty cheap
- Generally need $40,54,70 \mathrm{kB}$ of memory
- Strategy 1: 24, 35, 48 kB can be flash instead of SRAM
- Also can get signing to around 10 kB
- For a factor $3 \times-4 \times$, we save $39,43,58 \mathrm{kB}$

Conclusion

Paper: https://dsprenkels.com/files/dilithium-m3.pdf
Code: https://github.com/dilithium-cortexm/dilithium-cortexm Authors:

- Daan: https://dsprenkels.com
- Denisa: TBD
- Matthias: https://kannwischer.eu

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vredendaal.
NTRU Prime.
Submission to the NIST Post-Quantum Cryptography Standardization Project [NIS16], 2019.
available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.
Wouter de Groot.
A performance study of X25519 on Cortex-M3 and M4, 2015.
https://pure.tue.nl/ws/portalfiles/portal/47038543.

圊 Tim Güneysu, Markus Krausz, Tobias Oder, and Julian Speith.
Evaluation of lattice-based signature schemes in embedded systems.
In ICECS 2018, pages 385-388, 2018.
https://www.seceng.ruhr-uni-bochum.de/media/seceng/veroeffentlichungen/2018/10/
17/paper.pdf.
Radim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler, and Damien Stehlé.

CRYSTALS-DILITHIUM.

Submission to the NIST Post-Quantum Cryptography Standardization Project [NIS16], 2019.
available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

NIST Computer Security Division.
Post-Quantum Cryptography Standardization, 2016.
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.
围 Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay, and Shivam Bhasin. Improving Speed of Dilithium's Signing Procedure.
In CARDIS 2019, volume 11833 of LNCS, pages 57-73. Springer, 2019. https://eprint.iacr.org/2019/420.pdf.

[^0]: ${ }^{1}$ Based on the Master thesis of [dG15].

[^1]: ${ }^{\text {a }}$ Uses additional 23632 bytes of flash space.
 ${ }^{\text {b }}$ Uses additional 34896 bytes of flash space.
 c Uses additional 48208 bytes of flash space.

[^2]: ${ }^{1} \mathrm{We}$ are the first implementation on M3 ;)

[^3]: ${ }^{1} \mathrm{We}$ are the first implementation on M3 ;)

