
Dilithium for Memory Constrained Devices

Joppe W. Bos Joost Renes Amber Sprenkels

19 July 2022

NXP Semiconductors,

{joppe.bos,joost.renes}@nxp.com, amber@electricdusk.com

1

Outline

Introduction

Memory-optimizing Dilithium

Implementation & results

2

Introduction

Dilithium

▶ Post-quantum signature scheme

▶ Based on lattices

▶ Performance reasonably fast: 7M cycles on Cortex-M4 [AHKS22]

Table: Dilithium key sizes in kilobytes

NIST security level 2 3 5

public key size 1.3 2.0 2.6

secret key size 2.5 4.0 4.9

signature size 2.4 3.3 4.6

3

More important!

Dilithium:

winner of the NIST competition!

3

Previous work

Table: memory usage for Dilithium (security level 3) on Cortex-M4

publication year round Sign [KiBa] Verify [KiBa]

[GKOS18] 2018 1 84.5 53.5

[GKS21] 2021 2 9.7 9.8

PQClean [KSSW22] 2021 3 77.7 56.4

[AHKS22] 2022 3 67.4 56.6

a 1 kibibyte is equivalent to 1024 bytes

4

Our goal

Goal of this research:

Can we fit Dilithium in 8 KiB of RAM?

5

Memory-optimizing Dilithium

Dilithium signature generation

Algorithm Dilithium signature generation

input: secret key (s1, s2); public key (A, t = As1 + s2); message µ

loop

y
$← Sℓ

γ1

w1 := HighBits(Ay)

c̃ := H(µ||w1)

c := SampleInBall(c̃)

z := y + cs1
if ∥z∥∞ ≥ γ1 − β then continue

if ∥LowBits(Ay − cs2)∥∞ ≥ γ2 − β then continue

return σ = (c̃ , z)

end loop

6

#1: element-wise computation & compressing of w

Algorithm Dilithium signature generation

input: secret key (s1, s2); public key (A, t = As1 + s2); message µ

loop

y
$← Sℓ

γ1

w1 := HighBits(Ay)

c̃ := H(µ||w1)

c := SampleInBall(c̃)

z := y + cs1
if ∥z∥∞ ≥ γ1 − β then continue

if ∥LowBits(Ay − cs2)∥∞ ≥ γ2 − β then continue

return σ = (c̃ , z)

end loop

7

#1: element-wise computation & compressing of w

▶ Compute over vectors in element-wise fashion

• Not possible for w (because overlapping lifetimes of w1 and c)

▶ Workaround: compress w

• Every coefficient modulo q < 223:

• ⇒ 256 coeffs × 32 bits × {4, 6, 8} polynomials = {4.0, 6.0, 8.0} KiB

• Pack every coefficient into 24 bits:

• ⇒ 256 coeffs × 24 bits × {4, 6, 8} polynomials = {3.0, 4.5, 6.0} KiB

7

#1: element-wise computation & compressing of w

▶ Compute over vectors in element-wise fashion

• Not possible for w (because overlapping lifetimes of w1 and c)

▶ Workaround: compress w

• Every coefficient modulo q < 223:

• ⇒ 256 coeffs × 32 bits × {4, 6, 8} polynomials = {4.0, 6.0, 8.0} KiB

• Pack every coefficient into 24 bits:

• ⇒ 256 coeffs × 24 bits × {4, 6, 8} polynomials = {3.0, 4.5, 6.0} KiB

7

#2: optimizing c · s1 & c · s2

Algorithm Dilithium signature generation

input: secret key (s1, s2); public key (A, t = As1 + s2); message µ

loop

y
$← Sℓ

γ1

w1 := HighBits(Ay)

c̃ := H(µ||w1)

c := SampleInBall(c̃)

z := y + cs1
if ∥z∥∞ ≥ γ1 − β then continue

if ∥LowBits(Ay − cs2)∥∞ ≥ γ2 − β then continue

return σ = (c̃ , z)

end loop

8

#2: optimizing c · s1 & c · s2

▶ Dilithium uses the number-theoretic transform (NTT) for multiplications

• ▷ Multiply h = f · g
step 1: f̂ := NTT(f)

step 2: ĝ := NTT(g)

step 3: ĥ = f̂ ◦ ĝ ▷ in-place pointwise multiplication

step 4: h := NTT−1(ĥ)

• q is 23 bit, so need 32 bit registers for each coefficient

• Uses 1 KiB for f , f̂ , ĥ, ĥ, plus 1 KiB for g , ĝ

▶ So multiplication needs 2 KiB (1 KiB for each operand)

8

#2: optimizing c · s1 & c · s2

▶ (Polynomial structure is R = Zq[X]/(X 256 + 1))

▶ c ∈ R is small

▶ s1, s2 ∈ R are also small

▶ ⇒ all coefficients x in c · s1, c · s2 : |x | ≤ {78, 196, 120}a

• Don’t have to use a big q = 8380417,

• But can use a small q′ = {257, 769, 257}a

• Can use 16-bit registers for coefficients (instead of 32)

• Now we need only 0.5 KiB + 0.5 KiB = 1 KiB

aFor Dilithium{2,3,5}

9

#2: optimizing c · s1 & c · s2

▶ (Polynomial structure is R = Zq[X]/(X 256 + 1))

▶ c ∈ R is small

▶ s1, s2 ∈ R are also small

▶ ⇒ all coefficients x in c · s1, c · s2 : |x | ≤ {78, 196, 120}a

• Don’t have to use a big q = 8380417,

• But can use a small q′ = {257, 769, 257}a

• Can use 16-bit registers for coefficients (instead of 32)

• Now we need only 0.5 KiB + 0.5 KiB = 1 KiB

aFor Dilithium{2,3,5}

9

#2: optimizing c · s1 & c · s2

▶ (Polynomial structure is R = Zq[X]/(X 256 + 1))

▶ c ∈ R is small

▶ s1, s2 ∈ R are also small

▶ ⇒ all coefficients x in c · s1, c · s2 : |x | ≤ {78, 196, 120}a

• Don’t have to use a big q = 8380417,

• But can use a small q′ = {257, 769, 257}a

• Can use 16-bit registers for coefficients (instead of 32)

• Now we need only 0.5 KiB + 0.5 KiB = 1 KiB

aFor Dilithium{2,3,5}

9

#3: optimizing c · t0

▶ Similiar to c · s1 & c · s2

• But t0 is not small, coefficients up to ±213

• c · t0 coefficients up to {19, 21, 20} bits

• Does not fit in 16 bits

• So cannot use “small” (modulo-q′) NTT

▶ Fall-back to schoolbook multiplication

• Compress c into 68 bytes (68 B)

• Unpack t0 lazy from secret key (0 B)

• Accumulate into product (1 KiB)

▶ Very slow, but need to do only once

10

#3: optimizing c · t0

▶ Similiar to c · s1 & c · s2

• But t0 is not small, coefficients up to ±213

• c · t0 coefficients up to {19, 21, 20} bits

• Does not fit in 16 bits

• So cannot use “small” (modulo-q′) NTT

▶ Fall-back to schoolbook multiplication

• Compress c into 68 bytes (68 B)

• Unpack t0 lazy from secret key (0 B)

• Accumulate into product (1 KiB)

▶ Very slow, but need to do only once

10

#3: optimizing c · t0

▶ Similiar to c · s1 & c · s2

• But t0 is not small, coefficients up to ±213

• c · t0 coefficients up to {19, 21, 20} bits

• Does not fit in 16 bits

• So cannot use “small” (modulo-q′) NTT

▶ Fall-back to schoolbook multiplication

• Compress c into 68 bytes (68 B)

• Unpack t0 lazy from secret key (0 B)

• Accumulate into product (1 KiB)

▶ Very slow, but need to do only once 10

#4: careful variable allocation

Dilithium verification:

11

Implementation & results

Implementation

▶ Cross-platform (in pure C)

▶ No optimized assembly

▶ Use memory-optimization techniques

• Generate A and y on-the-fly

• Compressed format for w

• Use schoolbook multiplication for c · t0

• Use small-modulus NTTs for c · s1 and c · s2

• Use optimized variable allocations

▶ Unfortunately not open-source

12

Implementation

▶ Cross-platform (in pure C)

▶ No optimized assembly

▶ Use memory-optimization techniques

• Generate A and y on-the-fly

• Compressed format for w

• Use schoolbook multiplication for c · t0

• Use small-modulus NTTs for c · s1 and c · s2

• Use optimized variable allocations

▶ Unfortunately not open-source

12

Benchmarking setup

▶ Integrated our implementation into pqm4 [KRSS]

▶ Measured memory and performance on Cortex-M4

▶ Expectations (at least) of memory usage [KiB]:

variant 2 3 5

K 4.3 5.8 7.3

S 4.4 5.9 7.4

V 2.2 2.2 2.2

▶ Performance:

• Expecting considerable slowdown compared to performance-optimized

implementations

13

Benchmarking setup

▶ Integrated our implementation into pqm4 [KRSS]

▶ Measured memory and performance on Cortex-M4

▶ Expectations (at least) of memory usage [KiB]:

variant 2 3 5

K 4.3 5.8 7.3

S 4.4 5.9 7.4

V 2.2 2.2 2.2

▶ Performance:

• Expecting considerable slowdown compared to performance-optimized

implementations

13

Memory results

Table: memory usage on Cortex-M4 [KiB]

publication Dilithium-2 Dilithium-3 Dilithium-5

[AHKS22]
S 47.9 67.4 113.3

V 35.2 56.6 90.8

PQClean
S 50.7 77.7 –a

V 35.4 56.4 –a

this work
S 5.0 6.5 8.1

V 2.7 2.7 2.7

a Did not fit on the STM32F4 board

14

Speed results

Table: execution cycles on Cortex-M4 [kcc]b

publication Dilithium-2 Dilithium-3 Dilithium-5

[AHKS22]
S 4 083 6 624 8 726

V 1 572 2 692 4 707

PQClean
S 8 034 12 987 –a

V 2 223 3 666 –a

this work
S 18 470 36 303 44 332

V 4 036 7 249 12 616

a Did not fit on the STM32F4 board
b 1 kcc is 1000 cycles

15

Conclusion

▶ Dilithium can be small! :)

▶ But (compared to PQClean):

• Approx. 2× slower verification

• Approx. 2× – 3× slower signing

▶ Especially verification (2.7 KiB / 4 Mcc) is really wonderful

• 2.7 KiB leaves plenty of space for an OS & applications

• 4 Mcc on a 80 MHz device is 50 ms

16

Conclusion

▶ Dilithium can be small! :)

▶ But (compared to PQClean):

• Approx. 2× slower verification

• Approx. 2× – 3× slower signing

▶ Especially verification (2.7 KiB / 4 Mcc) is really wonderful

• 2.7 KiB leaves plenty of space for an OS & applications

• 4 Mcc on a 80 MHz device is 50 ms

16

Conclusion

▶ Dilithium can be small! :)

▶ But (compared to PQClean):

• Approx. 2× slower verification

• Approx. 2× – 3× slower signing

▶ Especially verification (2.7 KiB / 4 Mcc) is really wonderful

• 2.7 KiB leaves plenty of space for an OS & applications

• 4 Mcc on a 80 MHz device is 50 ms

16

Questions?

16

References i

Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and

Giorgia Azzurra Marson.

An efficient lattice-based signature scheme with provably secure

instantiation.

In David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors,

AFRICACRYPT 16, volume 9646 of LNCS, pages 44–60. Springer, April 2016.

17

References ii

Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Daan Sprenkels.

Faster Kyber and Dilithium on the Cortex-M4.

In Giuseppe Ateniese and Daniele Venturi, editors, ACNS 2022: Applied

Cryptography and Network Security, volume 13269 of LNCS, pages 853–871.

Springer, 2022.

Tim Güneysu, Markus Krausz, Tobias Oder, and Julian Speith.

Evaluation of lattice-based signature schemes in embedded systems.

In International Conference on Electronics, Circuits and Systems (ICECS), pages

385–388. IEEE, 2018.

18

References iii

Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels.

Compact Dilithium implementations on Cortex-M3 and Cortex-M4.

IACR TCHES, 2021(1):1–24, 2021.

https://tches.iacr.org/index.php/TCHES/article/view/8725.

Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.

pqm4: Post-quantum crypto library for the ARM Cortex-M4.

https://github.com/mupq/pqm4.

19

https://tches.iacr.org/index.php/TCHES/article/view/8725
https://github.com/mupq/pqm4

References iv

Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers.

Improving software quality in cryptography standardization projects.

Cryptology ePrint Archive, Report 2022/337, 2022.

https://eprint.iacr.org/2022/337.

Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,

Gregor Seiler, Damien Stehlé, and Shi Bai.

CRYSTALS-DILITHIUM.

Technical report, National Institute of Standards and Technology, 2020.

20

https://eprint.iacr.org/2022/337

References v

available at https:

//csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions.

Wen Wang, Shanquan Tian, Bernhard Jungk, Nina Bindel, Patrick Longa, and

Jakub Szefer.

Parameterized hardware accelerators for lattice-based cryptography.

IACR TCHES, 2020(3):269–306, 2020.

https://tches.iacr.org/index.php/TCHES/article/view/8591.

21

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://tches.iacr.org/index.php/TCHES/article/view/8591

	Introduction
	Memory-optimizing Dilithium
	Implementation & results

