X

Dilithium for Memory Constrained Devices

Joppe W. Bos  Joost Renes  Amber Sprenkels
19 July 2022

NXP Semiconductors,
{joppe.bos,joost.renes}@nxp.com, amber@electricdusk.com



Introduction
Memory-optimizing Dilithium

Implementation & results



Introduction




» Post-quantum signature scheme
> Based on lattices

» Performance reasonably fast: 7M cycles on Cortex-M4 [AHKS22]

Table: Dilithium key sizes in kilobytes

NIST security level 2 3 5

public key size 1.3 20 26
secret key size 25 40 49
signature size 24 33 46




More important!

Dilithium:
winner of the NIST competition!



Previous work

Table: memory usage for Dilithium (security level 3) on Cortex-M4

publication year round Sign [KiB?] Verify [KiB?]
[GKOS18] 2018 1 84.5 53.5
[GKS21] 2021 2 9.7 9.8
PQClean [KSSW22] 2021 3 777 56.4
[AHKS22] 2022 3 67.4 56.6

2 1 kibibyte is equivalent to 1024 bytes



Goal of this research:

Can we fit Dilithium in 8 KiB of RAM?



Memory-optimizing Dilithium




Dilithium signature generation

Algorithm Dilithium signature generation
input: secret key (s1,s2); public key (A, t = As; + s3); message

w; = HighBits(Ay)
& = Hiullwi)
¢ := SamplelnBall(¢)
zZ:=y+csy
if ||z||occ > 71 — 8 then continue
if ||LowBits(Ay — ¢s2)|/c > 72 — 8 then continue
return o = (¢, z)
end loop




#1: element-wise computation & compressing of w

Algorithm Dilithium signature generation
input: secret key (s1,s2); public key (A, t = As; + s3); message

loop
$
y &S5,
w; = HighBits(Ay)
& = H(ulwy)
¢ := SamplelnBall(¢)
zZ.—y+csy

if ||z]lc = 71 — 8 then continue
if ||LowBits(Ay — ¢s3)|/~ = 72 — B then continue
return o = (¢, z)

end loop




#1: element-wise computation & compressing of w

» Compute over vectors in element-wise fashion

e Not possible for w (because overlapping lifetimes of wy and c)

» Workaround: compress w



#1: element-wise computation & compressing of w

» Compute over vectors in element-wise fashion

e Not possible for w (because overlapping lifetimes of wy and c)

» Workaround: compress w
e Every coefficient modulo g < 223:
e = 256 coeffs x 32 bits x {4, 6,8} polynomials = {4.0,6.0,8.0} KiB

e Pack every coefficient into 24 bits:

e = 256 coeffs x 24 bits x {4, 6,8} polynomials = {3.0,4.5,6.0} KiB



#2: optimizing c-s; & c- s

Algorithm Dilithium signature generation
input: secret key (s1,s2); public key (A, t = As; + s3); message

w; = HighBits(Ay)
& = Hiullwi)
¢ := SamplelnBall(¢)
z:=y+csy
if ||z||oc > 71 — S then continue
if ||LowBits(Ay — ¢s3)|/~ > 72 — B then continue
return o = (¢, z)
end loop




#2: optimizing c-s; & c- s

» Dilithium uses the number-theoretic transform (NTT) for multiplications

e > Multiply h="1-g
step 1: f := NTT(f)
step 2: §:=NTT(g)
step 3: h= fog > in-place pointwise multiplication
step 4: h:=NTT }(h)
e g is 23 bit, so need 32 bit registers for each coefficient

e Uses 1 KiB for f, f IA1 /A7 plus 1 KiB for g, g

» So multiplication needs 2 KiB (1 KiB for each operand)



#2: optimizing c-s; & c- s

» (Polynomial structure is R = Z4[X]/(X?%° + 1))
» c € Rissmall

> s1,S2 € R are also small

*For Dilithium{2,3,5}
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#2: optimizing c-s; & c- s

» (Polynomial structure is R = Z4[X]/(X?%° + 1))
» c € Rissmall
> s1,S2 € R are also small
» = all coefficients x in c-s1,c-sp : |x]| < {78,196,120}°
e Don’t have to use a big g = 8380417,
e But can use a small ¢’ = {257,769, 257}
e Can use 16-bit registers for coefficients (instead of 32)

e Now we need only 0.5 KiB 4 0.5 KiB = 1 KiB

*For Dilithium{2,3,5}



#3: optimizing c - tg

» Similiarto c-s;1 & ¢ - s
e But ty is not small, coefficients up to +213
e c -ty coefficients up to {19, 21,20} bits
e Does not fit in 16 bits

e So cannot use “small” (modulo-¢) NTT

10
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e Compress c into 68 bytes (68 B)

e Unpack tg lazy from secret key (0 B)
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#3: optimizing c - tg

» Similiarto c-s;1 & ¢ - s

e But ty is not small, coefficients up to +213

e c -ty coefficients up to {19, 21,20} bits

e Does not fit in 16 bits

e So cannot use “small” (modulo-g’) NTT
» Fall-back to schoolbook multiplication

e Compress c into 68 bytes (68 B)

e Unpack tg lazy from secret key (0 B)

e Accumulate into product (1 KiB)

» Very slow, but need to do only once 10



#4: careful variable allocation

Dilithium verification:

768 1024, 208 208 68
e U BRI Y
tr H(pllt1) tr:=H(p||t1)
w H(tr|| M) = H(tr||M)
SamplelnBall c ) ¢ := SamplelnBall(¢)
H(pllwi) ﬁ) absorb y into H(u||wi)
ol ] 0<j<t W = 0
zj read z; from signature
check ||zj[|c <71 — B
2; 2; .= NTT(z;)
___________
w} w) w} = NTT*(a@})
T T:=c-t1,- 2¢ & schoolbook multiplication
wh =w, =T
h unpack hints from signature into h
check PopCount(h) < w
wi w} ; := UseHint, (h, wj, 27v2)
o absorb w} , into H(u|w})
¢ & = H(ulwr)
check ¢ = &

11



Implementation & results




Implementation

» Cross-platform (in pure C)
» No optimized assembly
» Use memory-optimization techniques

e Generate A and y on-the-fly

Compressed format for w

Use schoolbook multiplication for ¢ - tg

Use small-modulus NTTs for ¢ -sy and ¢ - s)

Use optimized variable allocations

12



Implementation

» Cross-platform (in pure C)
» No optimized assembly
» Use memory-optimization techniques
e Generate A and y on-the-fly
e Compressed format for w
e Use schoolbook multiplication for ¢ - tg
e Use small-modulus NTTs for ¢ -sy and ¢ - s
e Use optimized variable allocations
» Unfortunately not open-source
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Benchmarking setup

» Integrated our implementation into pgm4 [KRSS]
» Measured memory and performance on Cortex-M4

» Expectations (at least) of memory usage [KiB]:

variant 2 3 5

K 43 58 7.3
S 44 59 74
V 22 22 22
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Benchmarking setup

» Integrated our implementation into pgm4 [KRSS]
» Measured memory and performance on Cortex-M4

» Expectations (at least) of memory usage [KiB]:

variant 2 3 5

K 43 58 7.3
S 44 59 74
V 22 22 22

» Performance:

e Expecting considerable slowdown compared to performance-optimized
implementations

13



Memory results

Table: memory usage on Cortex-M4 [KiB]

publication Dilithium-2  Dilithium-3  Dilithium-5
S 47.9 67.4 113.3
[AHKS22]
\% 35.2 56.6 90.8
S 50.7 7.7 -
PQClean
\% 35.4 56.4 -
i S 5.0 6.5 8.1
this work
2.7 2.7 2.7

2 Did not fit on the STM32F4 board
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Speed results

Table: execution cycles on Cortex-M4 [kec]®

publication Dilithium-2  Dilithium-3  Dilithium-5
S 4083 6624 8726
[AHKS22]
V 1572 2692 4707
S 8034 12987 =£
PQClean
V 2223 3666 =+
i 18470 36303 44332
this work
4036 7249 12616

2 Did not fit on the STM32F4 board
b1 kcc is 1000 cycles

15



Conclusion

» Dilithium can be small! :)
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Conclusion

» Dilithium can be small! :)

» But (compared to PQClean):
e Approx. 2x slower verification

e Approx. 2x —3x slower signing

» Especially verification (2.7 KiB / 4 Mcc) is really wonderful
e 2.7 KiB leaves plenty of space for an OS & applications

e 4 Mcc on a 80 MHz device is 50 ms

16



Questions?
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