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Introduction



Dilithium

▶ Post-quantum signature scheme

▶ Based on lattices

▶ Performance reasonably fast: 7M cycles on Cortex-M4 [AHKS22]

Table: Dilithium key sizes in kilobytes

NIST security level 2 3 5

public key size 1.3 2.0 2.6

secret key size 2.5 4.0 4.9

signature size 2.4 3.3 4.6
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More important!

Dilithium:

winner of the NIST competition!
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Previous work

Table: memory usage for Dilithium (security level 3) on Cortex-M4

publication year round Sign [KiBa] Verify [KiBa]

[GKOS18] 2018 1 84.5 53.5

[GKS21] 2021 2 9.7 9.8

PQClean [KSSW22] 2021 3 77.7 56.4

[AHKS22] 2022 3 67.4 56.6

a 1 kibibyte is equivalent to 1024 bytes
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Our goal

Goal of this research:

Can we fit Dilithium in 8 KiB of RAM?
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Memory-optimizing Dilithium



Dilithium signature generation

Algorithm Dilithium signature generation

input: secret key (s1, s2); public key (A, t = As1 + s2); message µ

loop

y
$← Sℓ

γ1

w1 := HighBits(Ay)

c̃ := H(µ||w1)

c := SampleInBall(c̃)

z := y + cs1
if ∥z∥∞ ≥ γ1 − β then continue

if ∥LowBits(Ay − cs2)∥∞ ≥ γ2 − β then continue

return σ = (c̃ , z)

end loop
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#1: element-wise computation & compressing of w

Algorithm Dilithium signature generation
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#1: element-wise computation & compressing of w

▶ Compute over vectors in element-wise fashion

• Not possible for w (because overlapping lifetimes of w1 and c)

▶ Workaround: compress w

• Every coefficient modulo q < 223:

• ⇒ 256 coeffs × 32 bits × {4, 6, 8} polynomials = {4.0, 6.0, 8.0} KiB

• Pack every coefficient into 24 bits:

• ⇒ 256 coeffs × 24 bits × {4, 6, 8} polynomials = {3.0, 4.5, 6.0} KiB
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#2: optimizing c · s1 & c · s2
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#2: optimizing c · s1 & c · s2

▶ Dilithium uses the number-theoretic transform (NTT) for multiplications

• ▷ Multiply h = f · g
step 1: f̂ := NTT(f )

step 2: ĝ := NTT(g)

step 3: ĥ = f̂ ◦ ĝ ▷ in-place pointwise multiplication

step 4: h := NTT−1(ĥ)

• q is 23 bit, so need 32 bit registers for each coefficient

• Uses 1 KiB for f , f̂ , ĥ, ĥ, plus 1 KiB for g , ĝ

▶ So multiplication needs 2 KiB (1 KiB for each operand)
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#2: optimizing c · s1 & c · s2

▶ (Polynomial structure is R = Zq[X ]/(X 256 + 1))

▶ c ∈ R is small

▶ s1, s2 ∈ R are also small

▶ ⇒ all coefficients x in c · s1, c · s2 : |x | ≤ {78, 196, 120}a

• Don’t have to use a big q = 8380417,

• But can use a small q′ = {257, 769, 257}a

• Can use 16-bit registers for coefficients (instead of 32)

• Now we need only 0.5 KiB + 0.5 KiB = 1 KiB

aFor Dilithium{2,3,5}
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#3: optimizing c · t0

▶ Similiar to c · s1 & c · s2

• But t0 is not small, coefficients up to ±213

• c · t0 coefficients up to {19, 21, 20} bits

• Does not fit in 16 bits

• So cannot use “small” (modulo-q′) NTT

▶ Fall-back to schoolbook multiplication

• Compress c into 68 bytes (68 B)

• Unpack t0 lazy from secret key (0 B)

• Accumulate into product (1 KiB)

▶ Very slow, but need to do only once
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#4: careful variable allocation

Dilithium verification:
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Implementation & results



Implementation

▶ Cross-platform (in pure C)

▶ No optimized assembly

▶ Use memory-optimization techniques

• Generate A and y on-the-fly

• Compressed format for w

• Use schoolbook multiplication for c · t0

• Use small-modulus NTTs for c · s1 and c · s2

• Use optimized variable allocations

▶ Unfortunately not open-source
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Benchmarking setup

▶ Integrated our implementation into pqm4 [KRSS]

▶ Measured memory and performance on Cortex-M4

▶ Expectations (at least) of memory usage [KiB]:

variant 2 3 5

K 4.3 5.8 7.3

S 4.4 5.9 7.4

V 2.2 2.2 2.2

▶ Performance:

• Expecting considerable slowdown compared to performance-optimized

implementations
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Memory results

Table: memory usage on Cortex-M4 [KiB]

publication Dilithium-2 Dilithium-3 Dilithium-5

[AHKS22]
S 47.9 67.4 113.3

V 35.2 56.6 90.8

PQClean
S 50.7 77.7 –a

V 35.4 56.4 –a

this work
S 5.0 6.5 8.1

V 2.7 2.7 2.7

a Did not fit on the STM32F4 board
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Speed results

Table: execution cycles on Cortex-M4 [kcc]b

publication Dilithium-2 Dilithium-3 Dilithium-5

[AHKS22]
S 4 083 6 624 8 726

V 1 572 2 692 4 707

PQClean
S 8 034 12 987 –a

V 2 223 3 666 –a

this work
S 18 470 36 303 44 332

V 4 036 7 249 12 616

a Did not fit on the STM32F4 board
b 1 kcc is 1000 cycles
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Conclusion

▶ Dilithium can be small! :)

▶ But (compared to PQClean):

• Approx. 2× slower verification

• Approx. 2× – 3× slower signing

▶ Especially verification (2.7 KiB / 4 Mcc) is really wonderful

• 2.7 KiB leaves plenty of space for an OS & applications

• 4 Mcc on a 80 MHz device is 50 ms
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Questions?
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