X

Dilithium for Memory Constrained Devices

Joppe W. Bos Joost Renes Amber Sprenkels
19 July 2022

NXP Semiconductors,
{joppe.bos,joost.renes}@nxp.com, amber@electricdusk.com

Introduction
Memory-optimizing Dilithium

Implementation & results

Introduction

» Post-quantum signature scheme
> Based on lattices

» Performance reasonably fast: 7M cycles on Cortex-M4 [AHKS22]

Table: Dilithium key sizes in kilobytes

NIST security level 2 3 5

public key size 1.3 20 26
secret key size 25 40 49
signature size 24 33 46

More important!

Dilithium:
winner of the NIST competition!

Previous work

Table: memory usage for Dilithium (security level 3) on Cortex-M4

publication year round Sign [KiB?] Verify [KiB?]
[GKOS18] 2018 1 84.5 53.5
[GKS21] 2021 2 9.7 9.8
PQClean [KSSW22] 2021 3 777 56.4
[AHKS22] 2022 3 67.4 56.6

2 1 kibibyte is equivalent to 1024 bytes

Goal of this research:

Can we fit Dilithium in 8 KiB of RAM?

Memory-optimizing Dilithium

Dilithium signature generation

Algorithm Dilithium signature generation
input: secret key (s1,s2); public key (A, t = As; + s3); message

w; = HighBits(Ay)
& = Hiullwi)
¢ := SamplelnBall(¢)
zZ:=y+csy
if ||z||occ > 71 — 8 then continue
if ||LowBits(Ay — ¢s2)|/c > 72 — 8 then continue
return o = (¢, z)
end loop

#1: element-wise computation & compressing of w

Algorithm Dilithium signature generation
input: secret key (s1,s2); public key (A, t = As; + s3); message

loop
$
y &S5,
w; = HighBits(Ay)
& = H(ulwy)
¢ := SamplelnBall(¢)
zZ.—y+csy

if ||z]lc = 71 — 8 then continue
if ||LowBits(Ay — ¢s3)|/~ = 72 — B then continue
return o = (¢, z)

end loop

#1: element-wise computation & compressing of w

» Compute over vectors in element-wise fashion

e Not possible for w (because overlapping lifetimes of wy and c)

» Workaround: compress w

#1: element-wise computation & compressing of w

» Compute over vectors in element-wise fashion

e Not possible for w (because overlapping lifetimes of wy and c)

» Workaround: compress w
e Every coefficient modulo g < 223:
e = 256 coeffs x 32 bits x {4, 6,8} polynomials = {4.0,6.0,8.0} KiB

e Pack every coefficient into 24 bits:

e = 256 coeffs x 24 bits x {4, 6,8} polynomials = {3.0,4.5,6.0} KiB

#2: optimizing c-s; & c- s

Algorithm Dilithium signature generation
input: secret key (s1,s2); public key (A, t = As; + s3); message

w; = HighBits(Ay)
& = Hiullwi)
¢ := SamplelnBall(¢)
z:=y+csy
if ||z||oc > 71 — S then continue
if ||LowBits(Ay — ¢s3)|/~ > 72 — B then continue
return o = (¢, z)
end loop

#2: optimizing c-s; & c- s

» Dilithium uses the number-theoretic transform (NTT) for multiplications

e > Multiply h="1-g
step 1: f := NTT(f)
step 2: §:=NTT(g)
step 3: h= fog > in-place pointwise multiplication
step 4: h:=NTT }(h)
e g is 23 bit, so need 32 bit registers for each coefficient

e Uses 1 KiB for f, f IA1 /A7 plus 1 KiB for g, g

» So multiplication needs 2 KiB (1 KiB for each operand)

#2: optimizing c-s; & c- s

» (Polynomial structure is R = Z4[X]/(X?%° + 1))
» c € Rissmall

> s1,S2 € R are also small

*For Dilithium{2,3,5}

#2: optimizing c-s; & c- s

» (Polynomial structure is R = Z4[X]/(X?%° + 1))
» c € Rissmall
» s1,82 € R are also small

» = all coefficients x in c-s1,c-sp : |x]| < {78,196,120}°

*For Dilithium{2,3,5}

#2: optimizing c-s; & c- s

» (Polynomial structure is R = Z4[X]/(X?%° + 1))
» c € Rissmall
> s1,S2 € R are also small
» = all coefficients x in c-s1,c-sp : |x]| < {78,196,120}°
e Don’t have to use a big g = 8380417,
e But can use a small ¢’ = {257,769, 257}
e Can use 16-bit registers for coefficients (instead of 32)

e Now we need only 0.5 KiB 4 0.5 KiB = 1 KiB

*For Dilithium{2,3,5}

#3: optimizing c - tg

» Similiarto c-s;1 & ¢ - s
e But ty is not small, coefficients up to +213
e c -ty coefficients up to {19, 21,20} bits
e Does not fit in 16 bits

e So cannot use “small” (modulo-¢) NTT

10

#3: optimizing c - tg

» Similiarto c-s;1 & ¢ - s

e But ty is not small, coefficients up to +213

e c -ty coefficients up to {19, 21,20} bits

e Does not fit in 16 bits

e So cannot use “small” (modulo-g’) NTT
» Fall-back to schoolbook multiplication

e Compress c into 68 bytes (68 B)

e Unpack tg lazy from secret key (0 B)

e Accumulate into product (1 KiB)

10

#3: optimizing c - tg

» Similiarto c-s;1 & ¢ - s

e But ty is not small, coefficients up to +213

e c -ty coefficients up to {19, 21,20} bits

e Does not fit in 16 bits

e So cannot use “small” (modulo-g’) NTT
» Fall-back to schoolbook multiplication

e Compress c into 68 bytes (68 B)

e Unpack tg lazy from secret key (0 B)

e Accumulate into product (1 KiB)

» Very slow, but need to do only once 10

#4: careful variable allocation

Dilithium verification:

768 1024, 208 208 68
e U BRI Y
tr H(pllt1) tr:=H(p||t1)
w H(tr|| M) = H(tr||M)
SamplelnBall c) ¢ := SamplelnBall(¢)
H(pllwi) ﬁ) absorb y into H(u||wi)
ol] 0<j<t W = 0
zj read z; from signature
check ||zj[|c <71 — B
2; 2; .= NTT(z;)

w} w) w} = NTT*(a@})
T T:=c-t1,- 2¢ & schoolbook multiplication
wh =w, =T
h unpack hints from signature into h
check PopCount(h) < w
wi w} ; := UseHint, (h, wj, 27v2)
o absorb w} , into H(u|w})
¢ & = H(ulwr)
check ¢ = &

11

Implementation & results

Implementation

» Cross-platform (in pure C)
» No optimized assembly
» Use memory-optimization techniques

e Generate A and y on-the-fly

Compressed format for w

Use schoolbook multiplication for ¢ - tg

Use small-modulus NTTs for ¢ -sy and ¢ - s)

Use optimized variable allocations

12

Implementation

» Cross-platform (in pure C)
» No optimized assembly
» Use memory-optimization techniques
e Generate A and y on-the-fly
e Compressed format for w
e Use schoolbook multiplication for ¢ - tg
e Use small-modulus NTTs for ¢ -sy and ¢ - s
e Use optimized variable allocations
» Unfortunately not open-source

12

Benchmarking setup

» Integrated our implementation into pgm4 [KRSS]
» Measured memory and performance on Cortex-M4

» Expectations (at least) of memory usage [KiB]:

variant 2 3 5

K 43 58 7.3
S 44 59 74
V 22 22 22

13

Benchmarking setup

» Integrated our implementation into pgm4 [KRSS]
» Measured memory and performance on Cortex-M4

» Expectations (at least) of memory usage [KiB]:

variant 2 3 5

K 43 58 7.3
S 44 59 74
V 22 22 22

» Performance:

e Expecting considerable slowdown compared to performance-optimized
implementations

13

Memory results

Table: memory usage on Cortex-M4 [KiB]

publication Dilithium-2 Dilithium-3 Dilithium-5
S 47.9 67.4 113.3
[AHKS22]
\% 35.2 56.6 90.8
S 50.7 7.7 -
PQClean
\% 35.4 56.4 -
i S 5.0 6.5 8.1
this work
2.7 2.7 2.7

2 Did not fit on the STM32F4 board

14

Speed results

Table: execution cycles on Cortex-M4 [kec]®

publication Dilithium-2 Dilithium-3 Dilithium-5
S 4083 6624 8726
[AHKS22]
V 1572 2692 4707
S 8034 12987 =£
PQClean
V 2223 3666 =+
i 18470 36303 44332
this work
4036 7249 12616

2 Did not fit on the STM32F4 board
b1 kcc is 1000 cycles

15

Conclusion

» Dilithium can be small! :)

16

Conclusion

» Dilithium can be small! :)

» But (compared to PQClean):
e Approx. 2x slower verification

e Approx. 2x —3x slower signing

16

Conclusion

» Dilithium can be small! :)

» But (compared to PQClean):
e Approx. 2x slower verification

e Approx. 2x —3x slower signing

» Especially verification (2.7 KiB / 4 Mcc) is really wonderful
e 2.7 KiB leaves plenty of space for an OS & applications

e 4 Mcc on a 80 MHz device is 50 ms

16

Questions?

References i

@ Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Kramer, and
Giorgia Azzurra Marson.

An efficient lattice-based signature scheme with provably secure
instantiation.

In David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors,
AFRICACRYPT 16, volume 9646 of LNCS, pages 44—60. Springer, April 2016.

17

References ii

[Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Daan Sprenkels.

Faster Kyber and Dilithium on the Cortex-M4.

In Giuseppe Ateniese and Daniele Venturi, editors, ACNS 2022: Applied
Cryptography and Network Security, volume 13269 of LNCS, pages 853-871.
Springer, 2022.

@ Tim Giineysu, Markus Krausz, Tobias Oder, and Julian Speith.

Evaluation of lattice-based signature schemes in embedded systems.

In International Conference on Electronics, Circuits and Systems (ICECS), pages
385-388. IEEE, 2018.

18

References iii

[§ Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels.
Compact Dilithium implementations on Cortex-M3 and Cortex-M4.
IACR TCHES, 2021(1):1-24, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/8725.

[Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pgm4: Post-quantum crypto library for the ARM Cortex-M4.

https://github.com/mupq/pqm4.

19

https://tches.iacr.org/index.php/TCHES/article/view/8725
https://github.com/mupq/pqm4

References iv

[Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers.

Improving software quality in cryptography standardization projects.
Cryptology ePrint Archive, Report 2022/337, 2022.

https://eprint.iacr.org/2022/337.

@ Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai.

CRYSTALS-DILITHIUM.

Technical report, National Institute of Standards and Technology, 2020.

20

https://eprint.iacr.org/2022/337

References v

available at https:

//csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions.

@ Wen Wang, Shanquan Tian, Bernhard Jungk, Nina Bindel, Patrick Longa, and
Jakub Szefer.

Parameterized hardware accelerators for lattice-based cryptography.
IACR TCHES, 2020(3):269-306, 2020.

https://tches.iacr.org/index.php/TCHES/article/view/8591.

21

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://tches.iacr.org/index.php/TCHES/article/view/8591

	Introduction
	Memory-optimizing Dilithium
	Implementation & results

