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Elliptic curves

E : y2 = x3 + ax + b
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Elliptic curves: addition

E : y2 = x3 + ax + b
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Elliptic curves: doubling

E : y2 = x3 + ax + b
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Elliptic curves

▶ Coordinates include the point at infinity O
▶ Define P +O = P

▶ Curve equation: E : y2 = x3 + ax + b

▶ Coordinates are defined over a field Fq

▶ I.e. integers modulo q
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Elliptic curves: actually

E : y2 = x3 − 3x + 1 defined over F11
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Elliptic curves: actual addition

E : y2 = x3 − 3x + 1 defined over F11
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Group arithmetic

▶ We can do arithmetic with these rules! :)

▶ Addition: P + Q

▶ Subtraction: P − Q

▶ Neutral element: O, i.e. “zero”

▶ Scalar multiplication: [k]P = P + P + ... + P︸ ︷︷ ︸
k times

▶ Discrete log problem:
given P,Q where [k]P = Q, hard to find k
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Elliptic curves are cyclic

▶ Points form a cycle: O +P−−→ P
+P−−→ [2]P

+P−−→ [3]P
+P−−→ ...

+P−−→ [n − 1]P
+P−−→ O

▶ The order n should contain a large prime factor

▶ Only one cycle if n is prime
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Cofactors

▶ If n is not a prime
Then n = h · ℓ

▶ I.e. small loops are possible:

E.g. if 4|n, then there is a point T4: O +T4−−→ T4
+T4−−→ [2]T4

+T4−−→ [3]T4
+T4−−→ O︸ ︷︷ ︸

only 4 steps!

▶ h is called the cofactor

▶ This property is often harmless

▶ I.e. sometimes it’s the opposite of harmless
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A brief history...

▶ 1999: elliptic curves popularized

▶ 2006: Curve25519 published by Bernstein

▶ “Safe” for implementors

▶ Super fast

▶ Has cofactor h = 8

▶ 2014: Monero cryptocurrency

▶ Uses Curve25519

▶ 2017: vulnerability in Monero found

▶ Allowed anyone to create coins out of thin air
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The Monero vulnerability

▶ Transaction involves a ring signature

▶ Double-spending is prevented by a key image I

▶ I binds the transaction to signer’s public key P

▶ Binding is in zero-knowledge

▶ Key image I should be unique
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Monero transactions

▶ Have generators G1,G2; private key x ; public key P; key image I .

▶ signx(m)

▶ Sign m with private key x

▶ Choose commitment u ∈R hZℓ

▶ Compute a2 = [u]G2; c = H(m, a1, a2); r = u + cx

▶ Output signature s = (a1, a2, r)

▶ verifyP,I (m, s)

▶ [r ]G1
?
= a1 + [c]P

▶ [r ]G2
?
= a2 + [c]I

▶ I unique?
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Attacking Monero signatures

▶ Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r ]G2 = a2 + [c]I = a2 + [c]I ′,

where I ̸= I ′.

▶ Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.
▶ Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[ c
α

]
[α]Tα

= a2 + [c]I +
[ c
α

]
O

= a2 + [c]I
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Surely this could have been prevented?

Easy fix:

▶ Protocol assumed [r ]G2 = a2 + [c]I , only for a single I

▶ Fix: check if the order of I is ℓ

▶ i.e. check [ℓ]I
?
= O

▶ Fun fact: this check makes the verification 2× slower
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Why didn’t they validate points?

Look at the docs:

(highlight added by me)
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Surely this could have been prevented?

Easy fix:

▶ Protocol assumed [r ]G2 = a2 + [c]I , only for a single I

▶ Fix: check if the order of I is ℓ

▶ i.e. check [ℓ]I
?
= O

▶ Better fix: use a prime order curve
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Goal of this thesis

What is the actual performance benefit of Curve25519
over traditional (Weierstrass) curves?
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Our contribution

Our research:

▶ Implement variable base-point scalar multiplication

▶ That is the algorithm for computing [k]P,

▶ for a prime-order curve,

▶ that looks similar to Curve25519,

▶ on Sandy Bridge microarchitecture

▶ Compare performance with Curve25519 (Sandy2x)
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Selecting a curve

▶ I.e. E : y2 = x3 − 3x + 13318, defined over F2255−19.

▶ Prime order curve; same field as Curve25519
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Scalar multiplication overview

field arithmetic

fe add fe sub fe mul fe carry

addition formulas

ge double ge add

scalar multiplication
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Field element representation

▶ Use double-precision floating points

▶ Allows 4× vectorized operations using SIMD instructions

▶ Radix-221.25 redundant representation

▶ Use 12 limbs to represent 255-bit numbers

▶ I.e. f = f0 + f1 + ... + f11
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Field arithmetic

▶ Carry

▶ top(fi ): force loss of precision

▶ Then, move “high” bits to next limb

▶ Addition

▶ (f + g)i = fi + gi

▶ (f − g)i = fi − gi

▶ Multiplication

▶ (f · g)k =
∑

i+j=k figi +
∑

i+j=k+12

(
2−255 · 19

)
figi

▶ Optimized using Karatsuba’s multiplication
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Addition formulas

▶ Use Renes-Costello-Batina formulas

▶ Rewrite using graphs into vectorized operations

▶ Implement using field arithmetic functions
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Point doubling
dbl_generic

x yz

x3

31

y3

27

z3

34

1

2

3 4

5

6

78

9

10

11

1213

14 15

16

17 18

19

20

21

22

23

24

25

26

28

29

30

32

33

dbl_4x (3M + 4c)

extra carry operation

xy z

x3

31

y3

27

z3

3214

1312

15

5

2

34

8
⟦-b/2⟧

3

17
16
⟦-3⟧

18
⟦2b⟧

6

24
23
⟦3⟧

128

2630

9
= -a₉/2 19 25

22 2529a

4

11
10
7

⟦-6⟧

34
33

29b
⟦8⟧

11

22
21
⟦-3⟧

20
= -a₂₀

Legend

add

subtract

triple

multiply by small constant

multiply

square

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 24 / 30



Point doubling

dbl_generic

x yz

x3

31

y3

27

z3

34

1

2

3 4

5

6

78

9

10

11

1213

14 15

16

17 18

19

20

21

22

23

24

25

26

28

29

30

32

33

dbl_4x (3M + 4c)

extra carry operation

xy z

x3

31

y3

27

z3

3214

1312

15

5

2

34

8
⟦-b/2⟧

3

17
16
⟦-3⟧

18
⟦2b⟧

6

24
23
⟦3⟧

128

2630

9
= -a₉/2 19 25

22 2529a

4

11
10
7

⟦-6⟧

34
33

29b
⟦8⟧

11

22
21
⟦-3⟧

20
= -a₂₀

Legend

add

subtract

triple

multiply by small constant

multiply

square

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 24 / 30



Point addition
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Scalar multiplication

▶ Use left-to-right double-and-add

▶ Optimization: use signed window method (w = 5)

▶ Uses 263 · double+ 59 · add operations
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Compared to Curve25519

Table: Cycle counts for Sandy2x and this work.

Implementation Sandy Bridge Ivy Bridge Haswell

Curve25519 (Sandy2x) 159kcc 157kcc –

this work 390kcc 383kcc 340kcc

Conclusion: about 2.5× slower

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 28 / 30



Compared to Curve25519

Table: Cycle counts for Sandy2x and this work.

Implementation Sandy Bridge Ivy Bridge Haswell

Curve25519 (Sandy2x) 159kcc 157kcc –

this work 390kcc 383kcc 340kcc

Conclusion: about 2.5× slower

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 28 / 30



Thank you! I

Acknowledgements <3:

▶ Peter, (+the department, Marrit, Judith, Gerdriaan)

▶ The LLVM project (especially for llvm-mca)

▶ Olivier (from SNT; for lending their Sandy Bridge machine)

Stuff I left out:

▶ Ristretto

▶ Politics

▶ Many implementation details
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Thank you! II

The code is at https://github.com/dsprenkels/curve13318

Extra reading:

▶ My thesis: https://dsprenkels.com/files/thesis-20190311.pdf

▶ Monero vulnerability (1): https://nickler.ninja/blog/2017/05/23/exploiting-low-order-

generators-in-one-time-ring-signatures/

▶ Monero vulnerability (2): https://moderncrypto.org/mail-archive/curves/2017/000898.html

Find me through:

▶ Email: amber@electricdusk.com

▶ PGP key: 951D 6F6E C19E 5D87 1A61 A7F4 1445 C075 FFD5 68CD
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Double-and-add algorithm

function DoubleAndAdd(k ,P) ▷ Compute [k]P
R ← O
for i from n − 1 down to 0 do

R ← [2]R ▷ Doubling
if ki = 1 then

R ← R + P ▷ Addition
else

R ← R +O ▷ Addition
end if

end for
return R

end function
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Fixed-window double-and-add

function FixedWindow(k ,P) ▷ Compute [k]P
k ′ ←Windowsw (k)
Precompute ([2]P, ... , [2w − 1]P)
R ← O
for i from n

w − 1 down to 0 do
for j from 0 to w − 1 do

R ← [2]R ▷ w doublings
end for
if k ′

i ̸= 0 then
R ← R + [k ′

i ]P ▷ Addition
else

R ← R +O ▷ Addition
end if

end for
return R

end function
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Signed double-and-add
function SignedFixedWindow(k ,P) ▷ Compute [k]P

k ′ ← RecodeSigned(Windowsw (k))
Precompute ([2]P, ... , [2w−1]P)
R ← O
for i from n

w − 1 down to 0 do
for j from 0 to w − 1 do

R ← [2]R ▷ w doublings
end for
if k ′

i > 0 then
R ← R + [k ′

i ]P ▷ Addition
else if k ′

i < 0 then
R ← R − [−k ′

i ]P ▷ Addition
else

R ← R +O ▷ Addition
end if

end for
return R

end function
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Implemented signed double-and-add

function ScalarMultiplication(k ,P) ▷ Compute [k]P
T← (O,P, ... , [16]P) ▷ Precompute ([2]P, ... , [16]P)
k ′ ← RecodeSigned(Windows5(k))
R ← O
for i from 50 down to 0 do

for j from 0 to 4 do
R ← [2]R ▷ 5 doublings

end for
if k ′

i < 0 then
R ← R − T−k′

i
▷ Addition

else
R ← R + Tk′

i
▷ Addition

end if
end for
return R ▷ R = (XR : YR : ZR)

end function
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sign exponent mantissa

63 52 0
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Depiction of top(f )

253bi+1 253bi bi+1 bi

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?fi :

+ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+
ci :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0+ 1 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?z ′:

+ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−
ci :

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0result:

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 39 / 30



Signed windows

k ′
3 k ′

2 k ′
1 k ′

0

1011 0010 0110 1110k =
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Signed window recoding

k ′′
4 k ′′

3 k ′′
2 k ′′

1 k ′′
0

1011 0010 0110 1110

1 −101 010 111 −010

k =
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