
ECC optimization on Sandy Bridge
The cost of cofactor h = 1

Amber Sprenkels
amber@electricdusk.com

Radboud University Nijmegen

1 April 2019

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 1 / 30

mailto:amber@electricdusk.com

Outline

Introduction

Preliminaries

Cofactor security

ECC implementation

Results

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 2 / 30

Outline

Introduction

Preliminaries

Cofactor security

ECC implementation

Results

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 2 / 30

Elliptic curves

E : y2 = x3 + ax + b

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 3 / 30

Elliptic curves

E : y2 = x3 + ax + b

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 3 / 30

Elliptic curves: addition

E : y2 = x3 + ax + b

−4 −2 0 2 4

x

−4

−2

0

2

4

y
P

Q

−R

R

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 3 / 30

Elliptic curves: doubling

E : y2 = x3 + ax + b

−4 −2 0 2 4

x

−4

−2

0

2

4

y
P

−R

R

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 3 / 30

Elliptic curves

▶ Coordinates include the point at infinity O
▶ Define P +O = P

▶ Curve equation: E : y2 = x3 + ax + b

▶ Coordinates are defined over a field Fq

▶ I.e. integers modulo q

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 4 / 30

Elliptic curves

▶ Coordinates include the point at infinity O
▶ Define P +O = P

▶ Curve equation: E : y2 = x3 + ax + b

▶ Coordinates are defined over a field Fq

▶ I.e. integers modulo q

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 4 / 30

Elliptic curves

▶ Coordinates include the point at infinity O
▶ Define P +O = P

▶ Curve equation: E : y2 = x3 + ax + b

▶ Coordinates are defined over a field Fq

▶ I.e. integers modulo q

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 4 / 30

Elliptic curves: actually

E : y2 = x3 − 3x + 1 defined over F11

0 1 2 3 4 5 6 7 8 9 10 11

x

−5

−4

−3

−2

−1

0

1

2

3

4

5

y

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 5 / 30

Elliptic curves: actual addition

E : y2 = x3 − 3x + 1 defined over F11

0 1 2 3 4 5 6 7 8 9 10 11

x

−5

−4

−3

−2

−1

0

1

2

3

4

5

y

P

Q

−R

R

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 5 / 30

Group arithmetic

▶ We can do arithmetic with these rules! :)

▶ Addition: P + Q

▶ Subtraction: P − Q

▶ Neutral element: O, i.e. “zero”

▶ Scalar multiplication: [k]P = P + P + ... + P︸ ︷︷ ︸
k times

▶ Discrete log problem:
given P,Q where [k]P = Q, hard to find k

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 6 / 30

Group arithmetic

▶ We can do arithmetic with these rules! :)

▶ Addition: P + Q

▶ Subtraction: P − Q

▶ Neutral element: O, i.e. “zero”

▶ Scalar multiplication: [k]P = P + P + ... + P︸ ︷︷ ︸
k times

▶ Discrete log problem:
given P,Q where [k]P = Q, hard to find k

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 6 / 30

Group arithmetic

▶ We can do arithmetic with these rules! :)

▶ Addition: P + Q

▶ Subtraction: P − Q

▶ Neutral element: O, i.e. “zero”

▶ Scalar multiplication: [k]P = P + P + ... + P︸ ︷︷ ︸
k times

▶ Discrete log problem:
given P,Q where [k]P = Q, hard to find k

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 6 / 30

Elliptic curves are cyclic

▶ Points form a cycle: O +P−−→ P
+P−−→ [2]P

+P−−→ [3]P
+P−−→ ...

+P−−→ [n − 1]P
+P−−→ O

▶ The order n should contain a large prime factor

▶ Only one cycle if n is prime

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 7 / 30

Elliptic curves are cyclic

▶ Points form a cycle: O +P−−→ P
+P−−→ [2]P

+P−−→ [3]P
+P−−→ ...

+P−−→ [n − 1]P
+P−−→ O︸ ︷︷ ︸

n steps

▶ The order n should contain a large prime factor

▶ Only one cycle if n is prime

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 7 / 30

Cofactors

▶ If n is not a prime
Then n = h · ℓ

▶ I.e. small loops are possible:

E.g. if 4|n, then there is a point T4: O +T4−−→ T4
+T4−−→ [2]T4

+T4−−→ [3]T4
+T4−−→ O︸ ︷︷ ︸

only 4 steps!

▶ h is called the cofactor

▶ This property is often harmless

▶ I.e. sometimes it’s the opposite of harmless

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 8 / 30

Cofactors

▶ If n is not a prime
Then n = h · ℓ

▶ I.e. small loops are possible:

E.g. if 4|n, then there is a point T4: O +T4−−→ T4
+T4−−→ [2]T4

+T4−−→ [3]T4
+T4−−→ O︸ ︷︷ ︸

only 4 steps!

▶ h is called the cofactor

▶ This property is often harmless

▶ I.e. sometimes it’s the opposite of harmless

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 8 / 30

Cofactors

▶ If n is not a prime
Then n = h · ℓ

▶ I.e. small loops are possible:

E.g. if 4|n, then there is a point T4: O +T4−−→ T4
+T4−−→ [2]T4

+T4−−→ [3]T4
+T4−−→ O︸ ︷︷ ︸

only 4 steps!

▶ h is called the cofactor

▶ This property is often harmless

▶ I.e. sometimes it’s the opposite of harmless

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 8 / 30

Cofactors

▶ If n is not a prime
Then n = h · ℓ

▶ I.e. small loops are possible:

E.g. if 4|n, then there is a point T4: O +T4−−→ T4
+T4−−→ [2]T4

+T4−−→ [3]T4
+T4−−→ O︸ ︷︷ ︸

only 4 steps!

▶ h is called the cofactor

▶ This property is often harmless

▶ I.e. sometimes it’s the opposite of harmless

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 8 / 30

A brief history...

▶ 1999: elliptic curves popularized

▶ 2006: Curve25519 published by Bernstein

▶ “Safe” for implementors

▶ Super fast

▶ Has cofactor h = 8

▶ 2014: Monero cryptocurrency

▶ Uses Curve25519

▶ 2017: vulnerability in Monero found

▶ Allowed anyone to create coins out of thin air

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 9 / 30

A brief history...

▶ 1999: elliptic curves popularized

▶ 2006: Curve25519 published by Bernstein

▶ “Safe” for implementors

▶ Super fast

▶ Has cofactor h = 8

▶ 2014: Monero cryptocurrency

▶ Uses Curve25519

▶ 2017: vulnerability in Monero found

▶ Allowed anyone to create coins out of thin air

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 9 / 30

A brief history...

▶ 1999: elliptic curves popularized

▶ 2006: Curve25519 published by Bernstein

▶ “Safe” for implementors

▶ Super fast

▶ Has cofactor h = 8

▶ 2014: Monero cryptocurrency

▶ Uses Curve25519

▶ 2017: vulnerability in Monero found

▶ Allowed anyone to create coins out of thin air

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 9 / 30

A brief history...

▶ 1999: elliptic curves popularized

▶ 2006: Curve25519 published by Bernstein

▶ “Safe” for implementors

▶ Super fast

▶ Has cofactor h = 8

▶ 2014: Monero cryptocurrency

▶ Uses Curve25519

▶ 2017: vulnerability in Monero found

▶ Allowed anyone to create coins out of thin air

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 9 / 30

A brief history...

▶ 1999: elliptic curves popularized

▶ 2006: Curve25519 published by Bernstein

▶ “Safe” for implementors

▶ Super fast

▶ Has cofactor h = 8

▶ 2014: Monero cryptocurrency

▶ Uses Curve25519

▶ 2017: vulnerability in Monero found

▶ Allowed anyone to create coins out of thin air

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 9 / 30

A brief history...

▶ 1999: elliptic curves popularized

▶ 2006: Curve25519 published by Bernstein

▶ “Safe” for implementors

▶ Super fast

▶ Has cofactor h = 8

▶ 2014: Monero cryptocurrency

▶ Uses Curve25519

▶ 2017: vulnerability in Monero found

▶ Allowed anyone to create coins out of thin air

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 9 / 30

The Monero vulnerability

▶ Transaction involves a ring signature

▶ Double-spending is prevented by a key image I

▶ I binds the transaction to signer’s public key P

▶ Binding is in zero-knowledge

▶ Key image I should be unique

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 10 / 30

The Monero vulnerability

▶ Transaction involves a ring signature

▶ Double-spending is prevented by a key image I

▶ I binds the transaction to signer’s public key P

▶ Binding is in zero-knowledge

▶ Key image I should be unique

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 10 / 30

The Monero vulnerability

▶ Transaction involves a ring signature

▶ Double-spending is prevented by a key image I

▶ I binds the transaction to signer’s public key P

▶ Binding is in zero-knowledge

▶ Key image I should be unique

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 10 / 30

The Monero vulnerability

▶ Transaction involves a ring signature

▶ Double-spending is prevented by a key image I

▶ I binds the transaction to signer’s public key P

▶ Binding is in zero-knowledge

▶ Key image I should be unique

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 10 / 30

The Monero vulnerability

▶ Transaction involves a ring signature

▶ Double-spending is prevented by a key image I

▶ I binds the transaction to signer’s public key P

▶ Binding is in zero-knowledge

▶ Key image I should be unique

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 10 / 30

Monero transactions

▶ Have generators G1,G2; private key x ; public key P; key image I .

▶ signx(m)

▶ Sign m with private key x

▶ Choose commitment u ∈R hZℓ

▶ Compute a2 = [u]G2; c = H(m, a1, a2); r = u + cx

▶ Output signature s = (a1, a2, r)

▶ verifyP,I (m, s)

▶ [r]G1
?
= a1 + [c]P

▶ [r]G2
?
= a2 + [c]I

▶ I unique?

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 11 / 30

Monero transactions

▶ Have generators G1,G2; private key x ; public key P; key image I .

▶ signx(m)

▶ Sign m with private key x

▶ Choose commitment u ∈R hZℓ

▶ Compute a2 = [u]G2; c = H(m, a1, a2); r = u + cx

▶ Output signature s = (a1, a2, r)

▶ verifyP,I (m, s)

▶ [r]G1
?
= a1 + [c]P

▶ [r]G2
?
= a2 + [c]I

▶ I unique?

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 11 / 30

Attacking Monero signatures

▶ Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r]G2 = a2 + [c]I = a2 + [c]I ′,

where I ̸= I ′.

▶ Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.
▶ Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[c
α

]
[α]Tα

= a2 + [c]I +
[c
α

]
O

= a2 + [c]I

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 12 / 30

Attacking Monero signatures

▶ Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r]G2 = a2 + [c]I = a2 + [c]I ′,

where I ̸= I ′.

▶ Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.

▶ Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[c
α

]
[α]Tα

= a2 + [c]I +
[c
α

]
O

= a2 + [c]I

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 12 / 30

Attacking Monero signatures

▶ Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r]G2 = a2 + [c]I = a2 + [c]I ′,

where I ̸= I ′.

▶ Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.
▶ Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[c
α

]
[α]Tα

= a2 + [c]I +
[c
α

]
O

= a2 + [c]I

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 12 / 30

Attacking Monero signatures

▶ Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r]G2 = a2 + [c]I = a2 + [c]I ′,

where I ̸= I ′.

▶ Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.
▶ Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[c
α

]
[α]Tα

= a2 + [c]I +
[c
α

]
O

= a2 + [c]I

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 12 / 30

Attacking Monero signatures

▶ Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r]G2 = a2 + [c]I = a2 + [c]I ′,

where I ̸= I ′.

▶ Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.
▶ Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[c
α

]
[α]Tα

= a2 + [c]I +
[c
α

]
O

= a2 + [c]I

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 12 / 30

Attacking Monero signatures

▶ Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r]G2 = a2 + [c]I = a2 + [c]I ′,

where I ̸= I ′.

▶ Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.
▶ Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[c
α

]
[α]Tα

= a2 + [c]I +
�

�
��

[c
α

]
O

= a2 + [c]I

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 12 / 30

Attacking Monero signatures

▶ Challenge. Find some signature+keypair a2, c , r , and I , s.t.

[r]G2 = a2 + [c]I = a2 + [c]I ′,

where I ̸= I ′.

▶ Solution. Choose I ′ = I + Tα, where α|c and [α]Tα = O.
▶ Correctness.

a2 + [c]I ′ = a2 + [c](I + Tα)

= a2 + [c]I +
[c
α

]
[α]Tα

= a2 + [c]I +
�

�
��

[c
α

]
O

= a2 + [c]I

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 12 / 30

Surely this could have been prevented?

Easy fix:

▶ Protocol assumed [r]G2 = a2 + [c]I , only for a single I

▶ Fix: check if the order of I is ℓ

▶ i.e. check [ℓ]I
?
= O

▶ Fun fact: this check makes the verification 2× slower

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 13 / 30

Surely this could have been prevented?

Easy fix:

▶ Protocol assumed [r]G2 = a2 + [c]I , only for a single I

▶ Fix: check if the order of I is ℓ

▶ i.e. check [ℓ]I
?
= O

▶ Fun fact: this check makes the verification 2× slower

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 13 / 30

Surely this could have been prevented?

Easy fix:

▶ Protocol assumed [r]G2 = a2 + [c]I , only for a single I

▶ Fix: check if the order of I is ℓ

▶ i.e. check [ℓ]I
?
= O

▶ Fun fact: this check makes the verification 2× slower

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 13 / 30

Surely this could have been prevented?

Easy fix:

▶ Protocol assumed [r]G2 = a2 + [c]I , only for a single I

▶ Fix: check if the order of I is ℓ

▶ i.e. check [ℓ]I
?
= O

▶ Fun fact: this check makes the verification 2× slower

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 13 / 30

Why didn’t they validate points?

Look at the docs:

(highlight added by me)

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 14 / 30

Why didn’t they validate points?

Look at the docs:

(highlight added by me)

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 14 / 30

Surely this could have been prevented?

Easy fix:

▶ Protocol assumed [r]G2 = a2 + [c]I , only for a single I

▶ Fix: check if the order of I is ℓ

▶ i.e. check [ℓ]I
?
= O

▶ Better fix: use a prime order curve

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 15 / 30

Outline

Introduction

Preliminaries

Cofactor security

ECC implementation

Results

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 16 / 30

Goal of this thesis

What is the actual performance benefit of Curve25519
over traditional (Weierstrass) curves?

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 17 / 30

Our contribution

Our research:

▶ Implement variable base-point scalar multiplication

▶ That is the algorithm for computing [k]P,

▶ for a prime-order curve,

▶ that looks similar to Curve25519,

▶ on Sandy Bridge microarchitecture

▶ Compare performance with Curve25519 (Sandy2x)

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 18 / 30

Our contribution

Our research:

▶ Implement variable base-point scalar multiplication

▶ That is the algorithm for computing [k]P,

▶ for a prime-order curve,

▶ that looks similar to Curve25519,

▶ on Sandy Bridge microarchitecture

▶ Compare performance with Curve25519 (Sandy2x)

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 18 / 30

Selecting a curve

▶ I.e. E : y2 = x3 − 3x + 13318, defined over F2255−19.

▶ Prime order curve; same field as Curve25519

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 19 / 30

Selecting a curve

▶ I.e. E : y2 = x3 − 3x + 13318, defined over F2255−19.

▶ Prime order curve; same field as Curve25519

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 19 / 30

Scalar multiplication overview

field arithmetic

fe add fe sub fe mul fe carry

addition formulas

ge double ge add

scalar multiplication

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 20 / 30

Field element representation

▶ Use double-precision floating points

▶ Allows 4× vectorized operations using SIMD instructions

▶ Radix-221.25 redundant representation

▶ Use 12 limbs to represent 255-bit numbers

▶ I.e. f = f0 + f1 + ... + f11

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 21 / 30

Field element representation

▶ Use double-precision floating points

▶ Allows 4× vectorized operations using SIMD instructions

▶ Radix-221.25 redundant representation

▶ Use 12 limbs to represent 255-bit numbers

▶ I.e. f = f0 + f1 + ... + f11

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 21 / 30

Field element representation

▶ Use double-precision floating points

▶ Allows 4× vectorized operations using SIMD instructions

▶ Radix-221.25 redundant representation

▶ Use 12 limbs to represent 255-bit numbers

▶ I.e. f = f0 + f1 + ... + f11

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 21 / 30

Field element representation

▶ Use double-precision floating points

▶ Allows 4× vectorized operations using SIMD instructions

▶ Radix-221.25 redundant representation

▶ Use 12 limbs to represent 255-bit numbers

▶ I.e. f = f0 + f1 + ... + f11

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 21 / 30

Field element representation

▶ Use double-precision floating points

▶ Allows 4× vectorized operations using SIMD instructions

▶ Radix-221.25 redundant representation

▶ Use 12 limbs to represent 255-bit numbers

▶ I.e. f = f0 + f1 + ... + f11

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 21 / 30

Field arithmetic

▶ Carry

▶ top(fi): force loss of precision

▶ Then, move “high” bits to next limb

▶ Addition

▶ (f + g)i = fi + gi

▶ (f − g)i = fi − gi

▶ Multiplication

▶ (f · g)k =
∑

i+j=k figi +
∑

i+j=k+12

(
2−255 · 19

)
figi

▶ Optimized using Karatsuba’s multiplication

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 22 / 30

Field arithmetic

▶ Carry

▶ top(fi): force loss of precision

▶ Then, move “high” bits to next limb

▶ Addition

▶ (f + g)i = fi + gi

▶ (f − g)i = fi − gi

▶ Multiplication

▶ (f · g)k =
∑

i+j=k figi +
∑

i+j=k+12

(
2−255 · 19

)
figi

▶ Optimized using Karatsuba’s multiplication

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 22 / 30

Field arithmetic

▶ Carry

▶ top(fi): force loss of precision

▶ Then, move “high” bits to next limb

▶ Addition

▶ (f + g)i = fi + gi

▶ (f − g)i = fi − gi

▶ Multiplication

▶ (f · g)k =
∑

i+j=k figi +
∑

i+j=k+12

(
2−255 · 19

)
figi

▶ Optimized using Karatsuba’s multiplication

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 22 / 30

Addition formulas

▶ Use Renes-Costello-Batina formulas

▶ Rewrite using graphs into vectorized operations

▶ Implement using field arithmetic functions

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 23 / 30

Point doubling
dbl_generic

x yz

x3

31

y3

27

z3

34

1

2

3 4

5

6

78

9

10

11

1213

14 15

16

17 18

19

20

21

22

23

24

25

26

28

29

30

32

33

dbl_4x (3M + 4c)

extra carry operation

xy z

x3

31

y3

27

z3

3214

1312

15

5

2

34

8
⟦-b/2⟧

3

17
16
⟦-3⟧

18
⟦2b⟧

6

24
23
⟦3⟧

128

2630

9
= -a₉/2 19 25

22 2529a

4

11
10
7

⟦-6⟧

34
33

29b
⟦8⟧

11

22
21
⟦-3⟧

20
= -a₂₀

Legend

add

subtract

triple

multiply by small constant

multiply

square

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 24 / 30

Point doubling

dbl_generic

x yz

x3

31

y3

27

z3

34

1

2

3 4

5

6

78

9

10

11

1213

14 15

16

17 18

19

20

21

22

23

24

25

26

28

29

30

32

33

dbl_4x (3M + 4c)

extra carry operation

xy z

x3

31

y3

27

z3

3214

1312

15

5

2

34

8
⟦-b/2⟧

3

17
16
⟦-3⟧

18
⟦2b⟧

6

24
23
⟦3⟧

128

2630

9
= -a₉/2 19 25

22 2529a

4

11
10
7

⟦-6⟧

34
33

29b
⟦8⟧

11

22
21
⟦-3⟧

20
= -a₂₀

Legend

add

subtract

triple

multiply by small constant

multiply

square

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 24 / 30

Point addition
add_generic

x1 y1z1 x2 y2z2

x3

40

y3

38

z3

43

1 23 4 5

67

8

9 10

1112

13

14 15

1617

18 19

20

21

22

23 24

25

26

27

28

29

30

31

32

33

34

3536

37 3941

42

add_4x (3M and 4c)

extra carry after operation

x1 y1z1x2y2z2

x3

40

y3

38

z3

43

1 23 16

1415

192518

6

45

11

910

36

33
32

27b
26b
⟦3⟧

31
30
⟦3⟧

37

2324

35

13

39

8

4142

34 29

22
21
⟦3⟧

20

28

27a
26a
⟦3⟧

7 1217

Legend

add

subtract

triple

multiply by small constant

multiply

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 25 / 30

Point addition

add_generic

x1 y1z1 x2 y2z2

x3

40

y3

38

z3

43

1 23 4 5

67

8

9 10

1112

13

14 15

1617

18 19

20

21

22

23 24

25

26

27

28

29

30

31

32

33

34

3536

37 3941

42

add_4x (3M and 4c)

extra carry after operation

x1 y1z1x2y2z2

x3

40

y3

38

z3

43

1 23 16

1415

192518

6

45

11

910

36

33
32

27b
26b
⟦3⟧

31
30
⟦3⟧

37

2324

35

13

39

8

4142

34 29

22
21
⟦3⟧

20

28

27a
26a
⟦3⟧

7 1217

Legend

add

subtract

triple

multiply by small constant

multiply

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 25 / 30

Scalar multiplication

▶ Use left-to-right double-and-add

▶ Optimization: use signed window method (w = 5)

▶ Uses 263 · double+ 59 · add operations

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 26 / 30

Scalar multiplication

▶ Use left-to-right double-and-add

▶ Optimization: use signed window method (w = 5)

▶ Uses 263 · double+ 59 · add operations

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 26 / 30

Scalar multiplication

▶ Use left-to-right double-and-add

▶ Optimization: use signed window method (w = 5)

▶ Uses 263 · double+ 59 · add operations

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 26 / 30

Outline

Introduction

Preliminaries

Cofactor security

ECC implementation

Results

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 27 / 30

Compared to Curve25519

Table: Cycle counts for Sandy2x and this work.

Implementation Sandy Bridge Ivy Bridge Haswell

Curve25519 (Sandy2x) 159kcc 157kcc –

this work 390kcc 383kcc 340kcc

Conclusion: about 2.5× slower

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 28 / 30

Compared to Curve25519

Table: Cycle counts for Sandy2x and this work.

Implementation Sandy Bridge Ivy Bridge Haswell

Curve25519 (Sandy2x) 159kcc 157kcc –

this work 390kcc 383kcc 340kcc

Conclusion: about 2.5× slower

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 28 / 30

Thank you! I

Acknowledgements <3:

▶ Peter, (+the department, Marrit, Judith, Gerdriaan)

▶ The LLVM project (especially for llvm-mca)

▶ Olivier (from SNT; for lending their Sandy Bridge machine)

Stuff I left out:

▶ Ristretto

▶ Politics

▶ Many implementation details

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 29 / 30

Thank you! I

Acknowledgements <3:

▶ Peter, (+the department, Marrit, Judith, Gerdriaan)

▶ The LLVM project (especially for llvm-mca)

▶ Olivier (from SNT; for lending their Sandy Bridge machine)

Stuff I left out:

▶ Ristretto

▶ Politics

▶ Many implementation details

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 29 / 30

Thank you! II

The code is at https://github.com/dsprenkels/curve13318

Extra reading:

▶ My thesis: https://dsprenkels.com/files/thesis-20190311.pdf

▶ Monero vulnerability (1): https://nickler.ninja/blog/2017/05/23/exploiting-low-order-

generators-in-one-time-ring-signatures/

▶ Monero vulnerability (2): https://moderncrypto.org/mail-archive/curves/2017/000898.html

Find me through:

▶ Email: amber@electricdusk.com

▶ PGP key: 951D 6F6E C19E 5D87 1A61 A7F4 1445 C075 FFD5 68CD

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 30 / 30

https://github.com/dsprenkels/curve13318
https://dsprenkels.com/files/thesis-20190311.pdf
https://nickler.ninja/blog/2017/05/23/exploiting-low-order-generators-in-one-time-ring-signatures/
https://nickler.ninja/blog/2017/05/23/exploiting-low-order-generators-in-one-time-ring-signatures/
https://moderncrypto.org/mail-archive/curves/2017/000898.html
mailto:amber@electricdusk.com

References I

Barreto, P.S.L.M.: on Twitter (May 2017), https://twitter.com/pbarreto/status/869103226276134912

Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. pp. 207–228 (2006),
https://cr.yp.to/ecdh/curve25519-20060209.pdf

Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. pp. 124–142
(2011), https://ed25519.cr.yp.to/ed25519-20110926.pdf

Chou, T.: Sandy2x: New Curve25519 speed records. pp. 145–160 (2016),
https://www.win.tue.nl/~tchou/papers/sandy2x.pdf

Genkin, D., Valenta, L., Yarom, Y.: May the Fourth Be With You: A microarchitectural side channel attack on several
real-world applications of Curve25519. pp. 845–858 (2017), https://eprint.iacr.org/2017/806.pdf

Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. Dokl. Akad. Nauk SSSR
145(2), 293–294 (1962),
http://www.mathnet.ru/php/getFT.phtml?jrnid=dan&paperid=26729&what=fullt&option_lang=eng

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 31 / 30

https://twitter.com/pbarreto/status/869103226276134912
https://cr.yp.to/ecdh/curve25519-20060209.pdf
https://ed25519.cr.yp.to/ed25519-20110926.pdf
https://www.win.tue.nl/~tchou/papers/sandy2x.pdf
https://eprint.iacr.org/2017/806.pdf
http://www.mathnet.ru/php/getFT.phtml?jrnid=dan&paperid=26729&what=fullt&option_lang=eng

References II

Kaufmann, T., Pelletier, H., Vaudenay, S., Villegas, K.: When constant-time source yields variable-time binary:
Exploiting Curve25519-donna built with MSVC 2015. pp. 573–582 (2016),
https://infoscience.epfl.ch/record/223794/files/32_1.pdf

Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48, 209–209 (1987), https:
//www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf

luigi1111, ”fluffypony” Spagni, R.: Disclosure of a major bug in cryptonote based currencies (May 2017), https:
//src.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html

Miller, V.S.: Use of elliptic curves in cryptography. pp. 417–426 (1986),
https://www.researchgate.net/profile/Victor_Miller/publication/227128293_Use_of_Elliptic_Curves_
in_Cryptography/links/0c96052e065c94b47c000000/Use-of-Elliptic-Curves-in-Cryptography.pdf

Perrin, T.: Subject: [curves] CryptoNote and equivalent points (May 2017),
https://moderncrypto.org/mail-archive/curves/2017/000898.html

Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order elliptic curves. pp. 403–428 (2016),
http://eprint.iacr.org/2015/1060

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 32 / 30

https://infoscience.epfl.ch/record/223794/files/32_1.pdf
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
https://src.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://src.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://www.researchgate.net/profile/Victor_Miller/publication/227128293_Use_of_Elliptic_Curves_in_Cryptography/links/0c96052e065c94b47c000000/Use-of-Elliptic-Curves-in-Cryptography.pdf
https://www.researchgate.net/profile/Victor_Miller/publication/227128293_Use_of_Elliptic_Curves_in_Cryptography/links/0c96052e065c94b47c000000/Use-of-Elliptic-Curves-in-Cryptography.pdf
https://moderncrypto.org/mail-archive/curves/2017/000898.html
http://eprint.iacr.org/2015/1060

References III

Schnorr, C.P.: Efficient signature generation by smart cards 4(3), 161–174 (Jan 1991), https:
//www.researchgate.net/profile/Claus_Schnorr/publication/227088517_Efficient_signature_generation_
by_smart_cards/links/0046353849579ce09c000000/Efficient-signature-generation-by-smart-cards.pdf

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 33 / 30

https://www.researchgate.net/profile/Claus_Schnorr/publication/227088517_Efficient_signature_generation_by_smart_cards/links/0046353849579ce09c000000/Efficient-signature-generation-by-smart-cards.pdf
https://www.researchgate.net/profile/Claus_Schnorr/publication/227088517_Efficient_signature_generation_by_smart_cards/links/0046353849579ce09c000000/Efficient-signature-generation-by-smart-cards.pdf
https://www.researchgate.net/profile/Claus_Schnorr/publication/227088517_Efficient_signature_generation_by_smart_cards/links/0046353849579ce09c000000/Efficient-signature-generation-by-smart-cards.pdf

Double-and-add algorithm

function DoubleAndAdd(k ,P) ▷ Compute [k]P
R ← O
for i from n − 1 down to 0 do

R ← [2]R ▷ Doubling
if ki = 1 then

R ← R + P ▷ Addition
else

R ← R +O ▷ Addition
end if

end for
return R

end function

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 34 / 30

Fixed-window double-and-add

function FixedWindow(k ,P) ▷ Compute [k]P
k ′ ←Windowsw (k)
Precompute ([2]P, ... , [2w − 1]P)
R ← O
for i from n

w − 1 down to 0 do
for j from 0 to w − 1 do

R ← [2]R ▷ w doublings
end for
if k ′

i ̸= 0 then
R ← R + [k ′

i]P ▷ Addition
else

R ← R +O ▷ Addition
end if

end for
return R

end function

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 35 / 30

Signed double-and-add
function SignedFixedWindow(k ,P) ▷ Compute [k]P

k ′ ← RecodeSigned(Windowsw (k))
Precompute ([2]P, ... , [2w−1]P)
R ← O
for i from n

w − 1 down to 0 do
for j from 0 to w − 1 do

R ← [2]R ▷ w doublings
end for
if k ′

i > 0 then
R ← R + [k ′

i]P ▷ Addition
else if k ′

i < 0 then
R ← R − [−k ′

i]P ▷ Addition
else

R ← R +O ▷ Addition
end if

end for
return R

end function
Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 36 / 30

Implemented signed double-and-add

function ScalarMultiplication(k ,P) ▷ Compute [k]P
T← (O,P, ... , [16]P) ▷ Precompute ([2]P, ... , [16]P)
k ′ ← RecodeSigned(Windows5(k))
R ← O
for i from 50 down to 0 do

for j from 0 to 4 do
R ← [2]R ▷ 5 doublings

end for
if k ′

i < 0 then
R ← R − T−k′

i
▷ Addition

else
R ← R + Tk′

i
▷ Addition

end if
end for
return R ▷ R = (XR : YR : ZR)

end function

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 37 / 30

sign exponent mantissa

63 52 0

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 38 / 30

Depiction of top(f)

253bi+1 253bi bi+1 bi

? ?fi :

+ 1 1 0

+
ci :

0 0+ 1 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ?z ′:

+ 1 1 0

−
ci :

? 0 0result:

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 39 / 30

Signed windows

k ′
3 k ′

2 k ′
1 k ′

0

1011 0010 0110 1110k =

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 40 / 30

Signed window recoding

k ′′
4 k ′′

3 k ′′
2 k ′′

1 k ′′
0

1011 0010 0110 1110

1 −101 010 111 −010

k =

Amber Sprenkels ECC optimization on Sandy Bridge 1 April 2019 41 / 30

	Introduction
	Preliminaries
	Cofactor security

	ECC implementation
	Results
	Appendix

