We should share our secrets

Shamir secret sharing: how it works and how to implement it

Daan Sprenkels
hello@dsprenkels.com
Radboud University Nijmegen

28 December 2017

Who am I?

- Student at Radboud University Nijmegen
- Bachelor in Chemistry
- Currently studying Cyber Security
- On a regular day I implement elliptic curve crypto ${ }^{1}$

The others:

- Peter Schwabe ${ }^{2}$ (@cryptojedi)
- Sean Moss-Pultz ${ }^{3}$ (@moskovich)

[^0]
"Don't roll your own crypto"

"Don't roll your own crypto"

"and also don't implement your own crypto"

Outline

Part I: Crypto theory

What is secret sharing?
How does it work?

Part II: Crypto implementation
How to encode our values
Solving integrity
Side channel resistance
Performance and bitslicing

Outline

HOW HARD IS MY TALK?

Part I: crypto theory

Problem statement

- How to backup your secrets (wallet keys, passwords, etc.)?

Problem statement

- How to backup your secrets (wallet keys, passwords, etc.)?
- Need to trust a single entity

Problem statement

- How to backup your secrets (wallet keys, passwords, etc.)?
- Need to trust a single entity
- How to split up our trust?

Solving our problem

1. Cut my key into pieces

Secret message $m=A\|B\| C$.
Distribute A, B, C.

Solving our problem

1. Cut my key into pieces

Secret message $m=A\|B\| C$.
Distribute A, B, C.
Bad security!

Solving our problem

1. Cut my key into pieces

Secret message $m=A\|B\| C$.
Distribute A, B, C.
Bad security!
2. Use one-time-pad construction?

Generate random A, B
Choose $C=m \oplus A \oplus B$.

Solving our problem

1. Cut my key into pieces

Secret message $m=A\|B\| C$.
Distribute A, B, C.
Bad security!
2. Use one-time-pad construction?

Generate random A, B
Choose $C=m \oplus A \oplus B$.
Restore by computing $m^{\prime}=A \oplus B \oplus C$

Solving our problem

1. Cut my key into pieces

Secret message $m=A\|B\| C$.
Distribute A, B, C.
Bad security!
2. Use one-time-pad construction?

Generate random A, B
Choose $C=m \oplus A \oplus B$.
Restore by computing $m^{\prime}=A \oplus B \oplus C=A \oplus B \oplus(m \oplus A \oplus B)$

Solving our problem

1. Cut my key into pieces

Secret message $m=A\|B\| C$.
Distribute A, B, C.
Bad security!
2. Use one-time-pad construction?

Generate random A, B
Choose $C=m \oplus A \oplus B$.
Restore by computing $m^{\prime}=A \oplus B \oplus C=A \oplus B \oplus(m \oplus A \oplus B)$

Solving our problem

1. Cut my key into pieces

Secret message $m=A\|B\| C$.
Distribute A, B, C.
Bad security!
2. Use one-time-pad construction?

Generate random A, B
Choose $C=m \oplus A \oplus B$.
Restore by computing $m^{\prime}=A \oplus B \oplus C=m$

Solving our problem

1. Cut my key into pieces

Secret message $m=A\|B\| C$.
Distribute A, B, C.
Bad security!
2. Use one-time-pad construction?

Generate random A, B
Choose $C=m \oplus A \oplus B$.
Restore by computing $m^{\prime}=A \oplus B \oplus C=m$
Needs all pieces to restore the secret

A better solution

Shamir secret sharing

- Published almost 40 years ago by Adi Shamir
- Threshold scheme (n, k)
- "Provably secure"

A better solution

Shamir secret sharing

- Published almost 40 years ago by Adi Shamir
- Threshold scheme (n, k)
- "Provably secure" Information-theoretically secure

Example with $(n, k)=(5,4)$

How does the math work?

Given parameters (n, k) and message m :
Construct a polynomial of degree $k-1$:

$$
\begin{equation*}
p(x)=a_{k-1} x^{k-1}+\ldots+a_{1} x+\boldsymbol{m} \tag{1}
\end{equation*}
$$

With coefficients a_{i} randomly generated.

How does the math work?

Given parameters (n, k) and message m :
Construct a polynomial of degree $k-1$:

$$
\begin{equation*}
p(x)=a_{k-1} x^{k-1}+\ldots+a_{1} x+\boldsymbol{m} \tag{1}
\end{equation*}
$$

With coefficients a_{i} randomly generated.

Evaluate n points on the polynomial to get shares s_{i} :

$$
\begin{aligned}
& s_{1}=(1, p(1)) \\
& s_{2}=(2, p(2)) \\
& \vdots \\
& s_{n}=(n, p(n))
\end{aligned}
$$

How does the math work?

Find $p(x)=a_{k-1} x^{k-1}+\ldots+a_{1} x+m$ such that all s_{i} are on $p(x)$.
Solve for m :

$$
\begin{aligned}
& a_{k-1} x_{1}^{k-1}+\ldots+a_{1} x_{1}+m=y_{1} \\
& a_{k-1} x_{2}^{k-1}+\ldots+a_{1} x_{2}+m=y_{2} \\
& a_{k-1} x_{3}^{k-1}+\ldots+a_{1} x_{3}+m=y_{3} \\
& \ldots \\
& a_{k-1} x_{k}^{k-1}+\ldots+a_{1} x_{k}+m=y_{k}
\end{aligned}
$$

How does the math work?

Find $p(x)=a_{k-1} x^{k-1}+\ldots+a_{1} x+m$ such that all s_{i} are on $p(x)$.
Solve for m :

$$
\begin{aligned}
& a_{k-1} x_{1}^{k-1}+\ldots+a_{1} x_{1}+m=y_{1} \\
& a_{k-1} x_{2}^{k-1}+\ldots+a_{1} x_{2}+m=y_{2} \\
& a_{k-1} x_{3}^{k-1}+\ldots+a_{1} x_{3}+m=y_{3} \\
& \ldots \\
& a_{k-1} x_{k}^{k-1}+\ldots+a_{1} x_{k}+m=y_{k}
\end{aligned}
$$

Use Lagrange interpolation for solving

Example: combining shares

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solve for m :

$$
\begin{aligned}
& a_{2} x_{1}^{2}+a_{1} x_{1}+m=y_{1} \\
& a_{2} x_{2}^{2}+a_{1} x_{2}+m=y_{2} \\
& a_{2} x_{3}^{2}+a_{1} x_{3}+m=y_{3}
\end{aligned}
$$

Example: combining shares

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solve for m :

$$
\begin{aligned}
& 1^{2} a_{2}+a_{1}+m=21 \\
& 4^{2} a_{2}+4 a_{1}+m=6 \\
& 2^{2} a_{2}+2 a_{1}+m=8
\end{aligned}
$$

Example: combining shares

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solve for m :

$$
\begin{gathered}
1^{2} a_{2}+a_{1}+m=21 \\
4^{2} a_{2}+4 a_{1}+m=6 \\
2^{2} a_{2}+2 a_{1}+m=8 \\
m=42
\end{gathered}
$$

All good?

All good?

- Information-theoretically secure

All good?

- Information-theoretically secure for confidentiality
- Not really secure for integrity

Solving integrity

Solutions:

- Randomize x-values
- Only share random secrets

Part II: implementation

Requirements

Bitmark Inc. asks us for a Shamir secret sharing library.

- Secure for integrity (≥ 128 bits)
- Side channel resistant (timing, cache-timing)
- Portable to any platform

Requirements

Bitmark Inc. asks us for a Shamir secret sharing library.

- Secure for integrity (≥ 128 bits)
- Side channel resistant (timing, cache-timing)
- Portable to any platform

Existing libraries:

- ssss
- gfshare

Requirements

Bitmark Inc. asks us for a Shamir secret sharing library.

- Secure for integrity (≥ 128 bits)
- Side channel resistant (timing, cache-timing)
- Portable to any platform

Existing libraries:

- ssss
- gfshare

Both do not meet our requirements

Implementation challenges

On to implement it ourselves...

1. How to encode our values?
2. How to fix our integrity problem?
3. How to prevent side channels?
4. How to make it fast?

1. How to encode our values?

Options:

- Integers modulo large prime?
- Other finite field?
${ }^{1}$ For the maths people, we are using $\mathbb{F}_{2}[x] /\left(x^{8}+x^{4}+x^{3}+x+1\right)$

1. How to encode our values?

Options:

- Integers modulo large prime?
- Other finite field?

Piece up the secret in bytes and map them to $\mathbb{F}_{2^{8}}\left(\right.$ note $\left.^{1}\right)$

- Fast arithmetic
- Can secret-share every byte independently

[^1]
2. Solving integrity

Use hybrid encryption:

2. Solving integrity

Use hybrid encryption:

3. How to prevent side channel attacks?

Rules to protect against side channels ${ }^{2}$:

1. No branching (if, \&\&, ||, etc.)
${ }^{2}$ In software! Hardware implementations are a whole other story.

3. How to prevent side channel attacks?

Rules to protect against side channels ${ }^{2}$:

1. No branching (if, \&\&, ||, etc.)
2. No secret-dependent lookups (y = table[key[i]];)
${ }^{2}$ In software! Hardware implementations are a whole other story.

3. How to prevent side channel attacks?

Rules to protect against side channels ${ }^{2}$:

1. No branching (if, \&\&, ||, etc.)
2. No secret-dependent lookups (y = table[key[i]];)
3. No variable-time instructions (div, mul [2], etc.)
${ }^{2}$ In software! Hardware implementations are a whole other story.

4. Performance throug bitslicing

4. Performance throug bitslicing

- Working in bytes \Rightarrow need only 8 registers per byte
- Implement algorithm in logic circuits

4. Performance throug bitslicing

Example: Adding two bytes in parallel

4. Performance throug bitslicing

- Working in bytes \Rightarrow need only 8 registers per byte
- Implement algorithm in logic circuits
- 32-bit platform? 32x parallel computation

4. Performance throug bitslicing

- Working in bytes \Rightarrow need only 8 registers per byte
- Implement algorithm in logic circuits
- 32-bit platform? 32x parallel computation = performance :)

4. Performance throug bitslicing

- Working in bytes \Rightarrow need only 8 registers per byte
- Implement algorithm in logic circuits
- 32-bit platform? $32 \times$ parallel computation $=$ performance :)
- Scales to 64 -bit, avx $\{, 2,512\}$, etc. :)

Overview

Overview

Implementation performance

Measuring wall clock time ${ }^{3}$ with $(n, k)=(5,4)$

language	create	combine
Tight C loop	$9.6 \mu \mathrm{~s}$	$12 \mu \mathrm{~s}$
Go bindings	$11 \mu \mathrm{~s}$	$15 \mu \mathrm{~s}$
Rust bindings	$8.8 \mu \mathrm{~s}$	$5.4 \mu \mathrm{~s}$

[^2]
Implementation performance

Measuring wall clock time ${ }^{3}$ with $(n, k)=(5,4)$

language	create	combine
Tight C loop	$9.6 \mu \mathrm{~s}$	$12 \mu \mathrm{~s}$
Go bindings	$11 \mu \mathrm{~s}$	$15 \mu \mathrm{~s}$
Rust bindings	$8.8 \mu \mathrm{~s}$	$5.4 \mu \mathrm{~s}$

Conclusion: I.e. roughly 100000 calls per second.

[^3]
Stuff that can go wrong

Possible mistakes:

- Assuming integrity
- Timing attacks
- Bad randomness

Ethics

Ethics

Can our software be used with malicious intent?

Demo

"Don't implement your own crypto"

Acknowledgements

- Ed Schouten
- Ken Swenson
- Pol van Aubel
- Thijs Miedema

Cartoons on frame 9 authored by Randall Monroe

Thank you!

Slides can be found at https://dsprenkels.com/files/sss-34c3.pdf sss project is at https://github.com/dsprenkels/sss

Extra reading:

- http://loup-vaillant.fr/articles/implemented-my-own-crypto
- https://dsprenkels.com/mysterion.html

Find me through

- Email: hello@dsprenkels.com
- PGP key: 951D 6F6E C19E 5D87 1A61 A7F4 1445 C075 FFD5 68CD

References

```
O
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-optimization-manual.pdf (Jun 2016)
```

```http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0184b/Chdedhfg.html (2017)
```

```https://bitcointalk.org/index.php?topic=2199659.0 (2017)
```

```https://cryptocoding.net/index.php/Coding_rules (2017)
```

```Pedersen, T.P., et al.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Crypto. vol. 91, pp. 129-140. Springer (1991)
Poettering, B.: Shamir Secret Sharing Scheme. http://point-at-infinity.org/ssss/ (2006)
```

```Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (Nov 1979), http://doi.acm.org/10.1145/359168.359176
```

```Silverstone, D.: gfshare. http://www.digital-scurf.org/index.html (2006)
```


Example: combining shares (computation)

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solve for m :

$$
\begin{aligned}
& a_{2} x_{1}^{2}+a_{1} x_{1}+m=y_{1} \\
& a_{2} x_{2}^{2}+a_{1} x_{2}+m=y_{2} \\
& a_{2} x_{3}^{2}+a_{1} x_{3}+m=y_{3}
\end{aligned}
$$

Example: combining shares (computation)

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solve for m :

$$
\begin{aligned}
& 1^{2} a_{2}+a_{1}+m=21 \\
& 4^{2} a_{2}+4 a_{1}+m=6 \\
& 2^{2} a_{2}+2 a_{1}+m=8
\end{aligned}
$$

Example: combining shares (computation)

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solve for m :

$$
\begin{array}{r}
a_{2}+a_{1}+m=21 \\
16 a_{2}+4 a_{1}+m=6 \\
4 a_{2}+2 a_{1}+m=8
\end{array}
$$

Example: combining shares (computation)

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solve for m :

$$
\begin{aligned}
4 a_{2}+4 a_{1}+4 m & =84 \\
16 a_{2}+4 a_{1}+m & =6 \\
4 a_{2}+2 a_{1}+m & =8
\end{aligned}
$$

Example: combining shares (computation)

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solve for m :

$$
\begin{aligned}
2 a_{1}+3 m & =76 \\
16 a_{2}+4 a_{1}+m & =6 \\
4 a_{2}+2 a_{1}+m & =8
\end{aligned}
$$

Example: combining shares (computation)

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solve for m :

$$
\begin{aligned}
2 a_{1}+3 m & =76 \\
16 a_{2}+4 a_{1}+m & =6 \\
16 a_{2}+8 a_{1}+4 m & =32
\end{aligned}
$$

Example: combining shares (computation)

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solve for m :

$$
\begin{aligned}
2 a_{1}+3 m & =76 \\
16 a_{2}+4 a_{1}+m & =6 \\
4 a_{1}+3 m & =26
\end{aligned}
$$

Example: combining shares (computation)

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solve for m :

$$
\begin{aligned}
& 2 a_{1}+3 m=76 \\
& 4 a_{1}+3 m=26
\end{aligned}
$$

Example: combining shares (computation)

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solve for m :

$$
\begin{aligned}
& 4 a_{1}+6 m=152 \\
& 4 a_{1}+3 m=26
\end{aligned}
$$

Example: combining shares (computation)

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solve for m :

$$
\begin{aligned}
3 m & =126 \\
4 a_{1}+3 m & =26
\end{aligned}
$$

Example: combining shares (computation)

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solve for m :

$$
3 m=126
$$

Example: combining shares (computation)

$$
s_{1}=(1,21), s_{3}=(4,6), s_{4}=(2,8)
$$

Solved for m :

$$
m=42
$$

Lagrange interpolation

Given shares $s_{1}, \ldots, s_{k}=\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$.
Use Lagrange interpolation to get m.

$$
\begin{align*}
& \ell_{i}(x)=\prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}}=\frac{\left(x-x_{1}\right)}{\left(x_{i}-x_{1}\right)} \cdots \frac{\left(x-x_{k}\right)}{\left(x_{i}-x_{k}\right)} \tag{2}\\
& L(x)=\sum_{i=0}^{k} y_{i} \ell_{i}(x)=y_{1} \ell_{1}(x)+\ldots+y_{k} \ell_{k}(x) \tag{3}
\end{align*}
$$

Lagrange interpolation

Given shares $s_{1}, \ldots, s_{k}=\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$.
Use Lagrange interpolation to get m.

$$
\begin{gather*}
\ell_{i}(x)=\prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}}=\frac{\left(x-x_{1}\right)}{\left(x_{i}-x_{1}\right)} \cdots \frac{\left(x-x_{k}\right)}{\left(x_{i}-x_{k}\right)} \tag{2}\\
m=L(0)=\sum_{i=0}^{k} y_{i} \ell_{i}(0)=y_{1} \ell_{1}(0)+\ldots+y_{k} \ell_{k}(0) \tag{3}
\end{gather*}
$$

Lagrange interpolation

Given shares $s_{1}, \ldots, s_{k}=\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$.
Use Lagrange interpolation to get m.

$$
\begin{gather*}
\ell_{i}(0)=\prod_{j \neq i} \frac{0-x_{j}}{x_{i}-x_{j}}=\frac{\left(0-x_{1}\right)}{\left(x_{i}-x_{1}\right)} \cdots \frac{\left(0-x_{k}\right)}{\left(x_{i}-x_{k}\right)} \tag{2}\\
m=L(0)=\sum_{i=0}^{k} y_{i} \ell_{i}(0)=y_{1} \ell_{1}(0)+\ldots+y_{k} \ell_{k}(0) \tag{3}
\end{gather*}
$$

Lagrange interpolation

Given shares $s_{1}, \ldots, s_{k}=\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$.
Use Lagrange interpolation to get m.

$$
\begin{gather*}
\ell_{i}=\prod_{j \neq i} \frac{-x_{j}}{x_{i}-x_{j}}=\frac{\left(-x_{1}\right)}{\left(x_{i}-x_{1}\right)} \cdots \frac{\left(-x_{k}\right)}{\left(x_{i}-x_{k}\right)} \tag{2}\\
m=\sum_{i=0}^{k} y_{i} \ell_{i}=y_{1} \ell_{1}+\ldots+y_{k} \ell_{k} \tag{3}
\end{gather*}
$$

[^0]: ${ }^{1}$ The meaning of "crypto" is cryptography, not cryptocurrency!
 ${ }^{2}$ Radboud University
 ${ }^{3}$ Bitmark Inc. (https://bitmark.com)

[^1]: ${ }^{1}$ For the maths people, we are using $\mathbb{F}_{2}[x] /\left(x^{8}+x^{4}+x^{3}+x+1\right)$

[^2]: ${ }^{3}$ Wall clock time, best of three on my crappy laptop

[^3]: ${ }^{3}$ Wall clock time, best of three on my crappy laptop

